On Self-referential Shape Replication in Robust Aerospace Vehicles

Mikhail Prokopenko and Peter Wang
Centre for Intelligent Systems Design, CSIRO Information and Communication Technologies Centre
Locked bag 17, North Ryde 1670, Australia, {mikhail.prokopenko, peter.wang} @csiro.au

Abstract

We describe a multi-cellular shape replication mechanism im-
plemented in a sensing and communication network, moti-
vated by robust self-monitoring and self-repairing aerospace
vehicles. In particular, we propose a self-referential repre-
sentation (a “genome”), enabling self-inspection and self-
repair; an algorithm solving the problem for connected and
disconnected shapes; and a robust algorithm recovering from
possible errors in the “genome”. The presented mechanism
can replicate combinations of predefined shapes and arbitrary
shapes that self-organise in response to occurring damage.

Introduction

NASA’s goal of robust aerospace vehicles requires structures
that are capable of self-assessment and self-repair. Previous
work in the joint CSIRO-NASA Ageless Aerospace Vehicle
(AAV) project developed and examined concepts for inte-
grated sensing and communication networks which are ex-
pected to detect and react to impact location and damage
over a wide range of impact energies, ranging from micro-
particles to meteoroids (Price et al., 2003; Prokopenko et al.,
2004; Lovatt et al., 2003). One of the most important design
principles distinguishing an intelligent vehicle health man-
agement system from other sensing systems, is the require-
ment for continued functionality in the presence of damage,
and, ultimately, the ability to carry out repairs.

In this paper we investigate a possible first step towards
the self-repairing ability, focussing, in particular, on the need
for a robust self-replication of multi-cellular shapes. This
shape replication ability should cover both “standard” and
“non-standard” shapes. In other words, we expect that not
only a standard shape predefined by an available structural
“blueprint” can be produced when required, but also that
any non-standard and unpredictable shape covering a dam-
aged region can be dynamically replicated on demand. Im-
portantly, we investigate the self-replication mechanism that
would allow us to combine “standard” and “non-standard”
shapes if necessary. Repair actions, such as shape replica-
tion, might be progressing in the environment where further
impacts are likely to occur, and therefore, there is a need for
robust shape replication algorithms.

The next section will briefly describe the notion of emer-
gent impact boundaries, used to uniquely encode a shape

that might be replicated. We follow by setting the relevant
background on self-replication architectures. An algorithm
for shape replication is then presented and illustrated. The
algorithm incorporates a self-referential representation, and
solves the problem even if the shape is “disconnected” in
certain sense. Finally, we consider the case when shape
replication progresses in adverse circumstances, and new
impacts damage some parts of the shape being replicated.

Stable Impact Boundaries

The developed hybrid Concept Demonstrator models a two-
dimensional array of cells: some cells existing in dedi-
cated hardware (two micro-processors per cell) and some
residing within inter-connected personal computers (a num-
ber of cells per PC) (Price et al., 2003). We also used
a stand-alone AAV Simulator capable of simulating some
simple environmental effects such as particle impacts of
various energies. In the AAV Simulator, cells are rep-
resented as objects (squares) on a two-dimensional plane
(e.g., Figure 1), where they asynchronously interact only
with their immediate neighbours in von Neumann neigh-
bourhood, through connected (geometrically overlapping)
communication ports. This approach uses the idea of lo-
calised algorithms, in which simple local behaviours lead to
self-organisation of spatiotemporal multi-cellular patterns,
achieving a desired global objective.

Typically, the damage on the AAV skin caused by an im-
pact is most severe at the point of impact (an epicentre).
However, not only the cells at the epicentre are destroyed,
but the communication capability of the neighbouring cells
is reduced. Multiple impacts result in overlapping damaged
impact-surrounding regions with quite complex shapes.

Let us briefly describe multi-cellular impact boundaries,
self-organising in presence of cell failures and connectivity
disruptions. On the one hand, it is desirable that an impact
boundary, enclosing damaged areas, forms a continuously
connected closed circuit. This circuit may serve as a reliable
communication pathway around the impact-surrounding re-
gion within which communications are compromised. Every
cell on a continuously connected closed circuit must always
have two and only two neighbour cells, designated as the cir-
cuit members (circuit-neighbours of this cell). On the other

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

I >
Ready R |

Figure 1: White cells are destroyed, dark-grey cells form “scaf-
folding”, black cells form the “frame”. Boundary links are shown
as white double-lines.

hand, a continuously connected closed impact boundary pro-
vides a template for repair of the impact-surrounding region,
uniquely describing its shape (Figure 1). Both these func-
tionalities of impact boundaries can be contrasted with non-
continuous “guard walls” investigated by Durbeck and Ma-
cias (Durbeck and Macias, 2002) that simply isolate faulty
regions of the Cell Matrix, without connecting elements of a
“guard wall” in a circuit.

In order to serve either as a communication pathway or
a repair template, an impact boundary should be robust to
communication failures caused by proximity to the epicen-
tre. The algorithm producing such circuits and the metrics
quantitatively measuring their spatiotemporal stability are
described elsewhere (Foreman et al., 2003). In this paper,
we assume that our impact boundary is a stable continuously
connected closed circuit. It is sufficient to mention here the
following spatial self-organising layers:

e scaffolding region, containing the cells that suffered sig-
nificant communication damage;

e frame boundary — an inner layer of normal cells that are
able to communicate reliably among themselves;

o closed impact boundary, connecting the cells on the frame
boundary into a continuous closed circuit by identifying
their circuit-neighbours.

The “frame” separates the scaffolding region from the cells
that are able to communicate to their normal functional ca-
pacity. These internal layers (scaffolding, frame and closed
boundary) completely define an impact-surrounding region
as a layered spatial hierarchy. In general, the impact-
surrounding region can be seen as an example of annular
spatial sorting: “forming a cluster of one class of objects
and surrounding it with annular bands of the other classes,
each band containing objects of only one type” (Holland and
Melhuish, 1999). It could be argued that, as an emergent
structure, the impact-surrounding region has unique higher-
order properties, such as having an inside and an outside.

Self-replication: background and motivation

In this section we attempt to position our shape replication
scheme with respect to some well-known approaches. The-
oretical foundations for artificial self-replicating systems
were laid down by Von Neumann, who proposed two central
elements: a Universal Computer and a Universal Construc-
tor. A program IT encoded in the Universal Computer directs
the behavior of the Universal Constructor. The latter is used
to manufacture both another Universal Computer and a Uni-
versal Constructor. The program IT is then copied into the
newly manufactured Universal Computer. It is possible to
develop self-replicating automata which do not require uni-
versality. For example, a well-known self-replicating struc-
ture is a Langton’s loop constructed in two-dimensional, cel-
lular space. The loop is a closed data path, capable of trans-
mitting data in the form of signals. These signals not only
encode the loop’s “genome”, but serve also as the instruc-
tions for replication. In executing the instructions the loop
extends itself and folds into a daughter loop, also containing
the genome and capable of self-replication (Langton, 1984).

As pointed out by (Sipper, 1998), Langton’s loop and
its various extensions as well as other self-replicating au-
tomata based on Von Neumann architecture, can be thought
of as unicellular organisms: there is a single genome de-
scribing and contained within the entire automaton. Another
class of self-replicating automata includes artificial multi-
cellular organisms, where each of the several cells compris-
ing the organism contains a copy of the complete genome.
One well-advanced approach exploiting such artificial multi-
cellular organisms is the embryonic electronics (embryon-
ics), aimed at very large scale integrated circuits with self-
repair and self-replication capabilities (Sipper et al., 1997;
Mange et al., 2000). Essentially, embryonics employs three
biologically inspired principles: multi-cellular organisation,
cellular differentiation, and cellular division. Cellular dif-
ferentiation takes place by having each artificial cell com-
pute its coordinates (i.e., position) within a one- or two-
dimensional space, after which it can extract the specific
gene within the artificial genome responsible for the cell’s
functionality. Cellular division occurs when a “mother cell”
arbitrarily placed within the grid, multiplies to form a new
multi-cellular organism. In addition to self-replication of the
original circuit in case of a major fault, this artificial organ-
ism also exhibits self-repair capabilities, allowing partial re-
construction in case of a minor fault. In summary, the em-
bryonics approach models multicellular organisms that on-
togenetically develop in order to perform useful tasks.

Another relevant concept is self-inspection. In some
cases, the genome is predetermined and simply needs to be
replicated. This would be the case when a “blueprint” of a
standard shape is available. Sometimes, however, there is a
need to dynamically construct the genome describing a non-
standard shape for its subsequent replication. Moreover,
sometimes self-inspection should proceed concurrently with
the interpretation of the genome (Laing, 1977).

The shape replication algorithms developed in the context
of AAV and presented in the following sections are based
on the principles of multi-cellular organisation, cellular dif-
ferentiation, and cellular division as well — similarly to the
embryonics approach. A desired shape is encoded when an
emergent impact boundary self-inspects itself and stores the
“genome” in a “mother” cell. The genome contains both
data describing the boundary and a program of how to inter-
pret these data. The mother cell is then seeded in a new place
outside the affected AAV array. Executing its program initi-
ates cell-replication in the directions encoded in the genome.
Each cell-replication step involves copying of the genome
(both data and the program) followed by differentiation of
the data: an appropriate shift of certain coordinates. Newly
produced cells are capable of cellular division, continuing
the process until the encoded shape is constructed.

In order to provide a unifying view on the inter-related
concepts briefly described above, we informally characterise
the shape replication process in self-referential terms, em-
ploying two logical levels: an object level and a meta-level.
It is well- known that self-replication of a system can be
characterised by emergent behaviour and tangled hierar-
chies exhibiting Strange Loops: “an interaction between lev-
els in which the top level reaches back down towards the
bottom level and influences it, while at the same time being
itself determined by the bottom level” (Hofstadter, 1989). In
terms of shape replication, one may argue that the genome
encodes the shape in each cell together with the meta-level
instructions of how to replicate it. In other words, each cell
contains a model of the whole multi-cellular shape, unfold-
ing it at every cell-replication and differentiation step. In
addition, we shall illustrate that self-inspection of an emer-
gent impact boundary can be mirrored by self-inspection of
the genome inside each cell, at every cell-replication step.
Similarly, we shall demonstrate that self-repair of the over-
all damaged impact-surrounding region can be reflected in
self-repair of the code embedded in each cell.

Self-referential Shape Replication

Shape Structure

In this section we provide formal definitions of an impact
boundary and internal scaffolding, and draw a clear distinc-
tion between “connected” and “disconnected” cases. A two-
dimensional AAV array can be represented by a planar grid
graph G(V,E): the product of path graphs on m and n ver-
tices, where the vertices V(G) are any set of points on the
planar integer lattice. The edges E(G) connect vertices at
unit distances. Given an impact, all cells that are located
within the impact-surrounding region can be represented by
an impact subgraph A of G (Figure 2).

First of all, we identify all the vertices S C A which have
precisely 4 edges each. Then we define the scaffolding sub-
graph Y4 of A as a subgraph induced on the impact graph A
by the set S: i.e., as the set of the vertices S together with
any edges E(A) of the impact graph A whose endpoints are
both in the subset S.

HiE B
it

Figure 2: Top-left: a planar grid graph G, where vertices shown
in black represent cells affected by an impact. Top-right: the im-
pact subgraph A of G. Bottom-left: the scaffolding subgraph Y4
with vertices shown in grey, and the frame-boundary subgraph ®4
with vertices shown in black. Bottom-right: the closed-boundary
subgraph Q4 with vertices added to the frame shown in white.

Secondly, we identify the frame-boundary subgraph ®4
of A as a subgraph induced on the impact graph A by the
set-complement A \ Y4: i.e., as the set of the vertices A \ Y4
together with any edges E(A) of the impact graph A whose
endpoints are both in the subset A\ Y4. Figure 2 (bottom-
left) illustrates the case when both the scaffolding subgraph
Y4 and frame-boundary subgraph ®4 are disconnected.

Finally, the closed-boundary subgraph Q4 of G is de-
fined as follows. We intend to add to the frame-boundary
subgraph precisely those elements from G which provide
a shortest path (outside the scaffolding subgraph) between
components of the possibly disconnected frame-boundary
subgraph. Formally, we employ the graph-theoretic defi-
nition of convex sets, according to which a set of vertices
X in a connected graph is called convex if for every two
vertices u,v € X, the vertex set of every shortest path be-
tween u and v lies completely in X. We now identify the
graph-theoretic convex hull Hy of the set of frame-boundary
vertices V(®,4) in G but not in scaffolding subgraph Y4, as
the smallest graph-theoretic convex setin V(G)\V(Y4) con-
taining V(®4). A subgraph induced on the graph G by the
set Hy is the desired closed-boundary subgraph Q4 (Figure
2: bottom-right). It can be shown that the closed-boundary
subgraph Q4 is always cyclic.

These definitions are not constructively used by the de-
centralised boundary formation algorithms, localised within
each cell (Foreman et al., 2003). The graph-theoretic notions
require global information, used, for example, in specifying
all the vertices of the impact graph in advance, or finding
shortest paths and convex hulls. In reality, autonomous cells
asynchronously deal with unreliable communication mes-
sages, while trying to determine whether they belong to scaf-
folding, frame or closed boundary. We introduced here the
formal definitions in order to give a graph-theoretic seman-
tics to these emergent structures, and in particular, to distin-
guish between connected and disconnected scaffolding sub-

S + .

1 -
(u md e e EDE RSl

Figure 3: Boundary links.

x| 0] 0O 1]|2]3|3]4|4]4 3 2 2|1
yloj1|j2]2]2]2]|1 110 -1 -1 -1 0] 0
A | 32] 20] 30] 31] 31] 10] 32] 10] 20] 21 31 32 10| 31

Table 1: An example boundary genome.

graphs. It is precisely the second case that presents some
difficulties for shape replication.

Given the planar grid topology, each cell on the closed
impact boundary may have 6 boundary links, connecting
ports “left-right”, “left-top”, etc. Enumerating four com-
munication ports from 0 to 3 (“bottom” to “right” clock-
wise) allows us to uniquely label each boundary link with
a two-digit number A, e.g., “32” would encode a link be-
tween the “right” and “top” ports (Figure 3). Then, the
whole impact boundary can be encoded in an ordered list
of these labels. For instance, the boundary depicted in the
Figure 2 can be simply represented by the list {32, 20, 30,
31, 31,10,32,10,20,21,31,32,10,31}. However, in order
to replicate the bounded shape, filling it cell by cell, we need
to introduce a system of coordinates relative to a cell con-
taining the shape list. More precisely, the boundary genome
is a list of triples (o, B,A), where (a,f) are relative coor-
dinates of a cell with the boundary link A. The boundary
genome for our example is shown in the Table 1. The in-
structions of how to interpret these data can be easily repre-
sented in an assembler-like language, with each “program”
triple encoding two operands and an instruction type.

An Algorithm for Disconnected Scaffolding

The first phase is self-inspection of the impact boundary,
producing the genome, e.g., the genome in the Table 1. The
process starts with a selection of a mother cell (any cell sy
on the boundary), and involves the following steps:

e the mother cell inserts the triple (0,0,A() into the empty
genome, where A is the boundary link maintained by the cell
50, and sends the incomplete genome to the neighbour in a spe-
cific direction (e.g., counter-clockwise);

e cach boundary cell receiving the genome determines the relative
(a,b) coordinates of the message sender given the port of the
incoming message: e.g., if the message comes on the bottom
port (labelled as 0), then the sender’s relative coordinates are
(0,—1) (the possibilities are encoded in a look-up Table 2);

e the cell increments all (x,y) coordinates in the genome as fol-
lows: x=x4+a,y=y+b;

e the cell appends the triple (0,0,A;) to the genome, where A; is
the the boundary link maintained by this cell;

e if this cell is not the mother cell, it sends the genome to the
counter-clockwise neighbour, otherwise, the process terminates.

port 0 1 2 3
a 0 -1 0 1
b -1 0 1 0

Table 2: The look-up table of directions and coordinates.

The next phase is shape replication per se. It starts when
the mother cell is seeded in some available space. The pro-
cess involves cell-replications carried out by not only new
boundary cells, but also by new scaffolding cells. The cell-
replication program encoded in each cell has the following
steps (starting with the seed at the beginning):

e the cell iterates through the genome and determines whether

there is a triple (0,0,), for some 2;

e if such a triple is found, a Boolean flag ® is set to true (“bound-
ary cell”); otherwise ® = false;
e the cell iterates through all possible directions 7, where 0 <t <
3, doing for each 7 the following:
1) retrieve from the look-up Table 2 the coordinates (a,b) for
construction in the direction T;

2) check if there is a cell at the relative location (a,b): if there
is, then the direction 7 should not be used, and the cell moves
to the step (6), otherwise it continues with the following steps;

3) check if both ® = true and the two-digit number A does not
include the digit T;

4) if the condition (3) is satisfied (meaning a boundary cell is
considering to produce a scaffolding cell), then
a) fix the vertical “strip” x = a and, by varying the y coordi-
nate across the genome, compute the number of times n and
n_ the boundary fully crosses this “strip”, above and below
y = b respectively (this computation is described below);
b) check if either n4 or n_ is odd and neither is O;

5) if either the condition (3) is not satisfied, or the conditions
(3) and (4.b) are both satisfied (a boundary cell produces a
scaffolding cell), then
a) construct a cell in the direction T;
b) copy the genome to the constructed cell;
¢) decrement all coordinates in the constructed cell’s
genome as follows: x =x—a,y=y—b;
6) increment the direction T;
o the process stops when all directions have been checked.

In order to compute the numbers n and n_ relative to the
location (a, b), the cell iterates through the genome for x = a,
varying y > b and y < b respectively. The number n. is
initiated to 0, and is incremented each time either a) an entry
A =31 is encountered, or b) A = 32 is encountered, followed
(not necessarily immediately) by A = 10, or ¢) A = 21 is
encountered, followed (not necessarily immediately) by A =
30. The number n_ is computed similarly with the A pairs
in (b) and (c) reversed. The numbers n and n_ determine
whether the location (a,b) is inside or outside the shape.
Let us exemplify the cell-replication phase, and in partic-
ular cell-differentiation occurring at step (5). We continue
with the example genome (Table 1), and assume that the
seed (0,0,32) starts the process from the bottom-left cor-
ner of the boundary. Let us start with the direction T = 0.
The look-up table suggests the coordinates a = 0,b = —1,
the shift down. The location (0,—1) is free. The condition
(3) is satisfied as the number A = 32 does not have T =0 in
it. However, the vertical “strip”” on which a possible new cell

x| 0 o0 1|23 4 3 2 2 1

!
S
IS

y | -l 0] 1 1 1 1 -2 -2 -2 -1 -1

(=]
(=}

Al 32| 20| 30| 31| 31| 10| 32| 10[20 | 21 | 31 | 32 | 10 | 3I

Table 3: The cenome undated after cell-differentiation.

e — .o

e >0 B
E—»I} --i .
1 1

Figure 4: Shape replication. Boundary cells encoded in the
genome but not yet produced are shown with dashed lines. Left:
a black cell (seed) produces two white cells, indicated by arrows.
Right: Two more cells are being produced: one of them is a scaf-
folding cell, pointed to by the horizontal arrow. The inside direc-
tion is recognised by the vertical strip being “crossed” above and
below the considered location.

would be located is not “crossed” by the boundary at all, so
ny =n_ =0, and there is no need to produce a scaffolding
cell (which would be outside of the desired shape). The next
direction T = 1 is similar. The direction ©T = 2, however, “be-
longs” to the number A = 32, triggering the production of an-
other boundary cell with the coordinates a = 0,b = 1. A cell
is constructed in the direction 2 (top) relative to the seed; the
genome is copied to the newly constructed cell which is dif-
ferentiated by updating all coordinates as follows: x =x—0,
y=y— 1. In other words, all y coordinates are decremented,
resulting in genome shown in Table 3.

The (seed) cell that produced the copy is encoded in the
copy’s genome by triple (0,—1,32), i.e., the seed and the
copy have different representations of the same shape. The
last direction T = 3 is similar, and another boundary cell is
produced to the right. The shape replication process is now
driven by these two newly produced cells. For example, the
cell produced to the top of the seed considers 4 directions 7.
It excludes © = 0, because there is a cell already in the place
indicated by T = 0. The direction T = 1 is excluded because
it’s outside of the shape, as recognised by n, =0andn_ =0.
The direction T = 2 is selected because 2 is within A = 20,
triggering the cell-replication and cell-differentiation pro-
cess similar to the one described previously. The direction
T = 3 is interesting now because the corresponding location
a = 1,b = 0 is inside the shape as recognised by n; =1
and n_ = 1. In other words, there are two places where the
boundary “crosses” the strip x = a = 1: one above the level
y = b =0, and one below (Figure 4:right).

The process terminates precisely because boundary cells
distinguish between inside and outside, and do not replicate
outside the desired shape. The scaffolding cells can only
reach the boundary from inside: if a scaffolding cell pro-
duces a new cell whose genome has a triple (0,0,1) after an
update, then this replica recognises itself as a boundary cell,
and does not replicate outside. If the scaffolding subgraph
was always connected, a simpler algorithm would be possi-
ble. It would involve a) boundary cells building only other

Figure 5: Completed shape replication.

boundary cells; and b) seeding a single scaffolding cell. It
would, furthermore, avoid any need to verify whether repli-
cated cells are inside or outside the shape (i.e., the numbers
n, and n_ would not be needed). In either case (connected
or disconnected scaffolding) the shape replication is driven
by multiple cells, progressing in parallel (Figure 5).

Robust Shape Replication

The shape replication process described above assumes that
at any cell-replication step there are no errors. However,
there may be cases when some fragments of the genome are
damaged due to copying process or processors/memory fail-
ures. If the genome is not repaired then the shape replica-
tion process would not terminate at the boundary, and some
cells would be replicated beyond the desired shape by going
through missing boundary cells.

In this section we consider an advanced robust algorithm
designed to recover from such errors. More precisely, we
consider the case when some triples (x,y,A) in the genome
are corrupted. The main challenge is not only to recognise
corrupted data, but to avoid a replication that may produce
an incorrect shape. The proposed solution involves 1) self-
inspection of the genome within a cell, determining the end-
points of disconnected boundary fragments, 2) self-repair of
the genome within a cell, adding the triples between the dis-
connected fragments. Thus, self-inspection of the genome
on the cell level mirrors the boundary self-inspection, while
self-repair of the genome on the cell level mirrors the re-
pair of the overall shape. We believe that these are examples
of Strange Loops because on the one hand, events on the
multi-cellular shape’s level trigger cellular transformations
(e.g., a global repair activating the ontogenetical develop-
ment), while on the other hand, the actions carried out by
each cell (e.g., self-repair of the encoded genome) affect the
higher level where the shape is replicated.

Each phase of self-inspection of the genome within the
cell determines a pair of triples (x1,y1,A1) and (x2,y2,A2)
such that the triple (x;,y;,A;) is the last before the break in
the counter-clockwise direction, and (x,y2,A2) is the first
after the break counter-clockwise. If either of these triples is
not found, then the genome damage is not repairable. Oth-
erwise, a self-repair phase follows with the following steps:

__%} -
e

TSy RN

ey

Figure 6: The cell shown inside a circle attempts self-repair. Left:
the corrupted triples are shown with the “star’-like signs. Right:
the repaired triples are marked with crosses.

e for the start triple (x1,y;,A;): a) select a counter-clockwise di-
rection 7y in Aj; b) retrieve from the look-up Table 2 the coor-
dinates (ay,by) for repair in the direction 7;; c) setx; = x| +aj
and y; =y; +b1;

e for the end triple (x3,y2,A2): a) select a clockwise direction
Ty in Ay; b) retrieve from the look-up Table 2 the coordinates
(az,by) for repair in the direction Tp; c) set xp = xp +ap and
y2=y2+by;

e approximate the line between the points (x,y;) and (x2,y2) and
its slope y;

e set x = X1, y =y, and continue an iterative process until the
points (x,y) and (x2,y;) are the same:

1) determine coordinates (a, b) such that the line between (x +
a,y+b) and (xp,y2) has a slope closest to u; if the genome
contains a triple (x+a,y +b,*) for some boundary link A%,
then the algorithm terminates and the repair fails because a
projected fragment intersects an existing boundary;

2) retrieve from the look-up Table 2 the direction 7 correspond-
ing to the coordinates (a,b);

3) set the direction 7} opposite to 7; by using modulo 4, i.e.
Ty = (7 +2) mod 4;
4) form A by concatenating 7 and 7t} in decreasing order;
5) insert (x,y,A) and setx =x+a,y=y+b, and T| =T;
e when the points (x,y) and (x,y;) are the same, “seal” the break:
1) set the direction 7 opposite to T, as T; = (W +2) mod 4,
and the direction 7} opposite to Ty as T} = (71 4-2) mod 4;
2) form A by concatenating 7} and 15 in decreasing order;
3) insert (x,y,A);
The genome is partially repaired (Figure 6) within each
cell which detected a discontinuity. Although the repaired
genome does not cover all the missing cells, it does not in-
troduce any cells which were not in the original shape, ex-
hibiting soundness but not completeness property. In other
words, the repaired boundary is always contained within the
original shape. Importantly, there is a redundancy in the
shape replication process: other cells which did not suffer
any damage would successfully replicate the parts not en-
coded in the partially repaired genomes.

The described algorithms handle both standard
(“blueprint”) and non-standard shapes, self-organising
in response to damage. Moreover, it is possible to combine
these types. For example, structural data can be encoded
in the form of triples, and a given genome can be extended
in run-time with the data produced by self-inspecting
emergent boundaries. Similarly, the self-repair phase within
a cell which detected an anomaly in the genome may draw
some data from the structural “blueprints” rather than
approximate segments between disconnected fragments.

Conclusions and Future Work

We investigated a multi-cellular shape replication mecha-
nism, implemented in a sensing and communication AAV
network. The main algorithm solves the problem for con-
nected and disconnected scaffolding. The underlying self-
referential representation enables self-inspection and self-
repair — contributing to a robust algorithm that can recover
from possible errors in the “genome”. The presented mech-
anism can replicate predefined standard shapes, arbitrary
emergent shapes and their combinations. One future direc-
tion would involve treating the program in the same way as
the data, so that reprogrammable cells may redirect and im-
prove an ongoing shape replication process.

References

Durbeck, L. and Macias, N. (2002). Defect-tolerant, fine-grained
parallel testing of a cell matrix. In Schewel, J., James-Roxby,
P., Schmit, H., and McHenry, J., editors, Proceedings of SPIE
ITCom 2002 Series, Vol. 4867.

Foreman, M., Prokopenko, M., and Wang, P. (2003). Phase tran-
sitions in self-organising sensor networks. In Banzhaf, W.,
Christaller, T., Dittrich, P., Kim, J., and Ziegler, J., editors,
Advances in Artificial Life - Proceedings of the 7th European
Conference on Artificial Life (ECAL), volume 2801 of LNAI,
pages 781-791. Springer Verlag.

Hofstadter, D. R. (1989). Godel, Escher, Bach: An Eternal Golden
Braid. New York: Vintage Books.

Holland, O. and Melhuish, C. (1999). Stigmergy, self-organization,
and sorting in collective robotics. Artificial Life, 5:173-202.

Laing, R. (1977). Automaton models of reproduction by self-
inspection. Journal of Theoretical Biology, 66:437-456.

Langton, C. (1984). Self-reproduction in cellular automata. Phys-
ica D, 10:135-144.

Lovatt, H., Poulton, G., Price, D., Prokopenko, M., Valencia, P.,
and Wang, P. (2003). Self-organising impact boundaries in
ageless aerospace vehicles. In Rosenschein, J., Sandholm, T.,
Wooldridge, M., and Yokoo, M., editors, Proceedings of the
2nd International Joint Conference on Autonomous Agents
and Multi-Agent Systems, pages 249—-256. ACM Press.

Mange, D., Sipper, M., Stauffer, A., and Tempesti, G. (2000). To-
wards robust integrated circuits: The embryonics approach.
Proceedings of the IEEE, 88:516-541.

Price, D., Scott, A., Edwards, G., Batten, A., Farmer, A., Hed-
ley, M., Johnson, M., Lewis, C., Poulton, G., Prokopenko,
M., Valencia, P., and Wang, P. (2003). An integrated health
monitoring system for an ageless aerospace vehicle. In Pro-
ceedings of the Fourth International Workshop on Structural
Health Monitoring. Stanford University.

Prokopenko, M., Wang, P., Foreman, M., Valencia, P, Price, D.,
and Poulton, G. (2004). On connectivity of reconfigurable
impact networks in ageless aerospace vehicles. Journal of
Robotics and Autonomous Systems, Special Issue:in press.

Sipper, M. (1998). Fifty years of research on self-replication: An
overview. Artificial Life, 4:237-257.

Sipper, M., Mange, D., and Stauffer, A. (1997). Ontogenetic hard-
ware. BioSystems, 44:193-207.

