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Abstract

In this paper we proposed and verified a
methodology underlying the design of localised al-
gorithms for complex multi-agent systems, exem-
plified by self-monitoring aerospace vehicles. In
particular, we considered the emergence of self-
organising impact boundaries and recovery mem-
branes, separating damaged and/or potentially
recovering regions from less affected agents. In
order to identify phase transitions in system’s
dynamics, we investigated graph-theoretic and
information-theoretic metrics, and incorporated
them within fitness functions for a genetic algo-
rithm. The GA involved a generation gap strat-
egy and targeted a response time as well as spa-
tial connectivity, temporal persistence and size of
emergent boundaries and membranes. A variety
of stable spatiotemporal patterns were produced
under selection pressure, highlighting the poten-
tial for the design at the edge of chaos.

1. Introduction

Robust or “ageless” aerospace vehicles (AAVs) are ex-
pected to be capable of structural self-assessment and
repair. The research results presented in this pa-
per were obtained as part of the joint CSIRO-NASA
AAV project. At this stage, the project is concerned
primarily with the self-assessment, or self-monitoring,
functions, but it will progress towards the incorpora-
tion of damage prognostic models enabling a predic-
tive damage mitigation decision-making process. The
initial goal of the present AAV Concept Demonstra-
tor (Abbott et al., 2002, Abbott et al., 2003) is the de-
tection and characterisation of high velocity impacts
caused, for instance, by micro-meteoroids in space.

In general, the self-monitoring functions can be di-
vided between those carried out by distributed sensors
and decentralised processing and communication on the
skin or within the structure, and those that could be
more effectively provided by autonomous robotic non-

Figure 1: A single square cell with 4 communication ports:

Concept Demonstrator view of a printed circuit board.

destructive evaluation (NDE) agents deployed to moni-
tor damage or integrity of the vehicle structure. In this
paper, we consider the first type of agents embedded
in the skin of the AAV. In particular, we shall con-
sider a multi-cellular sensing and communication net-
work. Each cell in this network has the ability to
sense via its 4 piezoelectric sensors, process the inputs,
and communicate through its 4 communication ports
(Abbott et al., 2003), as shown in Figures 1 and 2.

A two-dimensional array of cells is modelled in
a biologically-inspired hybrid Concept Demonstrator,
some cells existing in dedicated hardware (a cell
per micro-processor) and some residing within inter-
connected personal computers (a number of cells per PC)
(Abbott et al., 2003). We also used a stand-alone Sim-
ulator capable of simulating some simple environmental
effects such as particle impacts of various energies.

The solution adopted for the problem of handling
distributed sensor data and making the self-monitoring



Figure 2: A single square cell with 4 communication ports:

AAV Simulator view.

system robust, is to distribute the processing as well,
so that most computation takes place near the data
source, and there is no single or small number of points
of failure. In other words, without centralised con-
trollers, agents (cells) are expected to self-organise and
survive on the basis of local, rather than global, in-
formation (no single agent has access to information
about any others but its neighbours). This approach
uses the idea of localised algorithms (Estrin et al., 1999,
Macias and Durbeck, 2002, Durbeck and Macias, 2002,
Prokopenko et al., 2004), in which simple local be-
haviours achieve a desired global objective, while com-
municating only with cells within an immediate neigh-
bourhood. Single cells may need to make fast and au-
tomatic responses to sudden damage, while collections
of cells may solve more complex tasks, for example,
produce an impact boundary with desired characteris-
tics (Lovatt et al., 2003, Foreman et al., 2003) or form a
spanning tree connecting cells that detected non-critical
impacts (Wang et al., 2003, Prokopenko et al., 2004).

Typically, the desirable emergent behaviour on the
system level is not easily predictable from local agents’
rules and interactions. Our proposed approach to design-
ing localised algorithms is based on an iterative process
including the following steps: a) forward simulation lead-
ing to emergent behaviour for a class of localised algo-
rithms; b) quantitative measurement of spatiotemporal
stability of the emergent patterns; and c) evolutionary
modelling of the algorithms, with the metrics obtained
at step b) contributing to the fitness functions. This
paper investigates the step c).

The next section will cover some background on mea-

sures of emergent behaviour, followed by a description,
in section 3., of a localised algorithm producing impact
boundaries and emergent recovery membranes. Section
4. will then describe a genetic algorithm and our exper-
iments on evolving the recovery membranes to fit the
desired criteria.

2. Background

A very promising direction was investigated by Wright
et al. (Wright et al., 2000) who designed a measure
of emergence of swarming/flocking behaviour in multi-
agent systems. The approach borrows from the analy-
sis of dynamical systems and assumes a selection of a
set of local state variables (eg., 2-dimensional coordi-
nates of agents/particles and their corresponding veloc-
ities). The proposed measure Ω estimates the level of
self-organisation in the multi-agent flock via approxima-
tion of the dynamical system’s characteristic dimension
— i.e., by determining how well a swarm/flock can be de-
scribed as a single body. The characteristic dimension is
approximated through the Shannon entropy of singular
value spectra sampled over time (Wright et al., 2000).
The proposed calculation involves a number of approx-
imations and is computationally intensive, but impor-
tantly, it associates “a systems’ ability to exhibit emer-
gent behaviour with sudden transitions in the Ω mea-
sure, relative to smooth changes in system parameters”
(Wright et al., 2000).

There are other information-theoretic metrics that tar-
get complexity of a multi-agent system. For example, a
rule-space of 1-dimensional cellular automata was char-
acterised with the Shannon entropy of rules’ frequency
distribution (Wuensche, 1999). The input-entropy set-
tles to fairly low values for ordered dynamics, but fluc-
tuates irregularly within a narrow high band for chaotic
dynamics. For the complex CA, the input-entropy gen-
erally settles onto a short attractor cycle, where order
and chaos may predominate at different times causing
the entropy to vary. A measure of the variability of the
input-entropy curve is its variance or standard deviation,
calculated over time. Wuensche has convincingly demon-
strated that only complex dynamics exhibits high vari-
ance of input-entropy, leading to automatic classification
of the rule-space. Importantly, the peak of input-entropy
variance points to a phase transition as well, indicating
the edge of chaos (complexity).

We would like to point out, however, that both the
Ω measure and the input-entropy of the CA rule-space
rely purely on local state variables that can be associ-
ated with each particle/cell, and do not directly cap-
ture inter-agent connections and interactions. In other
words, the Ω measure estimates degrees of freedom in
the dynamical system, rather than complexity of spatial
inter-connections in a multi-agent network. Similarly,
the input-entropy of the CA rule-space traces diversity of



rules used over time and identifies temporally persistent
configurations, rather than spatial connectivity among
neighboring cells. If one needs to capture emergence and
stability of a specific spatial pattern (eg., a continuously
connected boundary, a maximally connected sub-graph,
a desired geometric or topological shape, etc.), then an-
other type of measure is needed.

It is well-known that graph connectivity can be anal-
ysed in terms of the size of the largest connected sub-
graph (LCS) and its standard deviation obtained across
an ensemble of graphs, as suggested by the random
graphs theory (Erdös and Renyi, 1961). In particular,
critical changes occur in connectivity of a directed graph
as the number of edges increases — the size of the LCS
rapidly increases as well and fills most of the graph, while
the variance in the size of the LCS reaches a maximum
at some critical point before decreasing. Thus, a metric
based on LCS variance may capture spatial aspects of
desired emergent patterns (connectivity), while a metric
based on entropy of local agent variables (rules, coordi-
nates, velocities, etc.) may capture temporal persistence
of emergent behaviour.

Importantly, the approach introduced in the work
done by (Wright et al., 2000) suggests a feedback using
the Ω measure in evolving the desired pattern: swarming
behaviour as opposed to fully coordinated “crystalline”
behaviour or totally uncoordinated dynamics of indepen-
dent particles. A feedback to evolvable localised algo-
rithms, based on a quantitative measure of global emer-
gent behaviour, is central to our approach as well. More-
over, the identified distinction between spatial and tem-
poral metrics allows us to implement this feedback sys-
tematically, focussing on those evolvable aspects that are
important for a specific task (spatial connectivity and/or
temporal persistence, size of emergent structures, etc.).

3. Impact Boundaries

This section presents a localised algorithm producing im-
pact boundaries in the presence of connectivity disrup-
tions and cell failures resulting from impacts. Typically,
the damage on the AAV skin caused by a high energy
impact is most severe at the point of impact (an epicen-
tre). It will be assumed that not only the cells at the
epicentre are destroyed, but the communication capa-
bility of the neighbouring cells may be reduced — e.g.,
the communication damage may propagate out with an
exponential decay to a certain radius. In this case, the
damage can be characterised by a probability Pi of an
error corrupting a message bit i, dependent on proximity
of the affected communication port to the epicentre:

Pi =
1

2
(1 −

d

R
)α,

where d is the distance between the involved communica-
tion port and the epicentre of the impact with the radius

Figure 3: A stable impact boundary: white cells are de-

stroyed, dark-grey cells form “scaffolding”, black cells form

“frame”. Boundary links are shown as white double-lines.

R, and α is the exponential decay of the communication
loss. Obviously, multiple impacts result in overlapping
damaged regions, and the cumulative bit error probabil-
ity can be approximated as

Pi =
1

2

j=m
∑

j=1

(1 −
dj

Rj

)α,

where m is the number of impacts. The probability that
the whole message containing n bits is corrupted depends
on the employed error correction code. For example,
the (12, 8) Hamming error correction code (8 data and 4
parity check bits) corrects a single bit error per 12 bits,
and leads to the following estimation

Pfailure =

{

0 if Pn
i ≤ r;

1 − Pn
i if Pn

i > r,

where r = 1

12
is the error correction rate1.

The impact boundaries are expected to enclose criti-
cally damaged regions and form continuously connected
closed circuits (Lovatt et al., 2003). Moreover, impact
boundaries must be robust to communication malfunc-
tions caused by proximity to the impact — in other
words, in the presence of unreliable communications be-
tween cells due to high probabilities Pfailure, and with-
out knowing the distances between each cell and the epi-
centre. Figure 3 illustrates a typical situation: the white
cells are destroyed, normal cells (background colour) do
not detect any damage, while cells shown with white
double-lines self-organise into the impact boundary. Im-
pact boundaries are intended to ensure a reliable com-
munication pathway around the damaged region, and

1A computationally expensive Reed-Solomon error correction
code would give a much better error correction rate than 1

12
in the

best case of consecutive “burst” errors.



also create an outline for subsequent self-repair, being in-
spired by a biological analogy — the clotting of a wound
on mammalian skin. Not surprisingly, spatiotemporal
stability in impact boundaries is an important concern:
even at the periphery of a single impact region the prob-
ability Pfailure may be fairly high. Moreover, multi-
ple impacts often introduce some asymmetry within cell
neighbourhoods, so that a cell may be able to transmit
but not receive data or vice versa (Lovatt et al., 2003).

3.1 Emergent Membranes and Recovery Mode

In this section, while describing the localised algorithm
producing impact boundaries, we shall highlight the
role of emergent recovery membranes that separate the
boundaries from inner impact-surrounding regions, in-
cluding (possibly recovering) cells that may communi-
cate unreliably. We intend to show that a recovery mem-
brane is an emergent structure, and its emergence is pre-
cisely the reason for stabilisation of the impact bound-
ary. In doing so we shall also underscore the parameters
used to evolve recovery membranes and stable impact
boundaries.

First of all, we consider the following two communica-
tion behaviours potentially leading to emergence of an
impact boundary, in the absence of sensory readings from
cells destroyed by impacts:

(i) At the start of every cycle, every cell sends a Ping
message to each of its neighbours.

(ii) If a boolean variable EnableAcks is true, a cell sends
an Acknowledgment reply when it receives a Ping
message.

The second behaviour is evolvable, while the first one
is pre-determined. Two binary circular arrays are used
to store the communication histories for ping messages
(pingArray) and acknowledgments (ackArray) for each
communication port. The size of these arrays is called
the communication history length.

Every cycle, after receiving communication messages,
each cell updates the following parameters:

(1) For each communication port, PingFailure will re-
sult if the percentage of lost Pings in the pingArray
is greater than PingFailThreshold.

(2) For each communication port, PingSuccess will re-
sult if the percentage of Pings received in the pingAr-
ray is greater than or equal to PingSuccessThreshold.

(3) For each communication port, AckSuccess will re-
sult if the percentage of Acknowledgments received
in the AckArray is greater than or equal to AckSuc-
cessThreshold.

The Failure and Success parameters are hysteretic:
they change values only when a sufficient communica-
tion history is accumulated. This lagging of an effect

behind its cause provides a (temporary) resistance to
change and ensures a degree of stability in the treatment
of communication connections between any two cells:

(4) A neighbour is considered to be communicating
when EnableAcks is false and PingSuccess is true, or
both EnableAcks is true and AckSuccess is true.

(5) Scaffolding state Ss will result if there are no com-
municating neighbours.

(6) Frame boundary state Sf will result if PingSuc-
cess is true for at least one communication port, and
PingFailure is true for at least one communication
port2.

(7) Closed boundary state Sc will result if the cell
state is Sf , and there are at least two communicating
neighbours.

In order for a continuous impact boundary to emerge,
the following two communication behaviours were con-
sidered:

(iii) if the cell state is Sc, 1) determine a cell α that
failed to communicate; 2) determine two communi-
cating neighbour cells β1 and β2 nearest to the cell
α3; 3) map the directions to α, β1 and β2 to a di-
rection γ; and 4) send a “Connect(τ, γ)” message to
both β1 and β2 with a time to live parameter τ ;

(iv) upon receiving “Connect(τ, γ)” message from a
cell α, if the cell state is not Sc, 1) switch to the
state Sc, 2) if τ > 0, follow the steps 2) and 3)
from (iii) producing new direction γ ′ and 3) send a
“Connect(τ − 1, γ′)” message to neighbours β1 and
β2.

The time to live τ is an evolvable parameter, and pre-
vents spurious links from persisting. In general, the de-
scribed policy achieves the desired robustness and conti-
nuity of self-organising impact boundaries for a variety of
cell shapes (triangular and square) and communication
damage probability distributions (Foreman et al., 2003).
One particular evolvable behaviour is critical in achiev-
ing the desired stability:

(v) If a boolean variable EnableShutdown is true, the
cell in the Scaffolding state Ss will stop transmitting
messages.

This is needed in order to break asymmetry between
neighboring cells, where a cell is able to transmit data
but not receive, or vice versa — it is better in such cases

2This condition is similar to the condition of having at least
one communicating neighbour and at least one mis-communicating
neighbour, but does not assume Acknowledgement messages at all.

3When cell δ determines its own neighbour cells nearest to some
other neighbour cell α, it chooses the cells β1 and β2 on opposite
sides (clockwise and counter-clockwise), relative to α.



not to communicate at all. This behaviour is effective in
achieving stable impact boundaries. However, the cells
that stopped transmitting messages may need to resume
communications under certain conditions — for example,
when a repair action is initiated, and their neighbours
are again ready to receive communications (i.e., when
the cause of asymmetry is eliminated). The conditions
for resumption of communications have to be precise so
that they are not reacted upon prematurely, interfering
with boundary formation. A variant of these recovery
conditions is given below:

(vi) Recovery state Sr will result if all ports have ping-
Success for a number of consecutive cycles, where this
number is set by RecoveryThreshold.

(vii) Recovery state Sr will result if all ports have ping-
Failure for a number of consecutive cycles, where this
number is set by RecoveryThreshold.

(viii) A cell stays in the Recovery state Sr and may
send communication messages during the next Re-
coveryInertia cycles.

The behaviour (vii) enables totally isolated cells to be in
a ready recovery state as well — a feature that, under-
standably, may be needed when a repair is in progress
and cells are being transported across a panel. It is pre-
cisely the combination of the “shutdown” and “recovery”
conditions that makes the problem of designing (evolv-
ing) stable impact boundaries particularly difficult. On
one hand, “shutdown” condition (v) disables “asymmet-
ric” messages, making the task of boundary formation
easier. On the other hand, conditions (vi)-(viii) may
enable “asymmetric” messages, potentially destabilising
the boundary.

The solution to this problem is provided by emer-
gent spatiotemporal structures — recovery membranes
— that separate the boundaries from recovering cells.
A recovery membrane always forms on the inside of
the closed boundary, and on the outside of the recov-
ering area. Interestingly, unlike scaffolding and frame
boundary, the membrane is not a designated state into
which a cell can switch. Membrane cells shut down
their communications, following behaviour (v) like other
scaffolding cells, but do not resume communications be-
cause behaviours (vi)—(viii) are not applicable, as there
are some (but not all) mis-communicating neighbours.
Without a membrane, the cells on the frame boundary
would be confused by intermittent messages from scaf-
folding cells attempting recovery. Figure 4 illustrates a
checkered-pattern recovery membrane shown with dark-
grey colour, while the recovering cells are shown in
darker shade of white. It is quite obvious that the mem-
brane cells separate the recovering scaffolding cells from
the frame boundary.

Figure 4: Five white cells at the epicentre are destroyed. A

recovery membrane shown in dark-grey “absorbs” scaffolding

cells that attempt recovery, shown in darker shade of white,

and separates them from the frame, shown in black.

4. Evolving Recovery Membranes

In this section, we describe a Genetic Algorithm (GA)
aimed at evolving the parameters used in impact bound-
ary formation. In particular, we examine the inter-
relationships between communication “shutdown” and
“recovery” conditions that give rise to recovery mem-
branes needed for stable impact boundaries. Some of the
evolving parameters designate conditionalised branches
of the impact boundary algorithm, and some represent
various thresholds, so the search space is significantly
large. It is well-known that a genetic algorithm, as a
problem-solving tool based on biological evolution, works
on improving a solution via a search through a process of
selection, recombination (crossover) and mutation, and
is particularly useful when the search space has many lo-
cal optima or is too large to use conventional techniques.

4.1 Encoding

We followed a traditional GA encoding: binary strings
encoding the chromosome as a structure containing the
collection of parameters (genes) and representing a be-
havioural trait of the individual. Our chromosome con-
tains the following 42 bits:

History, ρ (5 bits) — number of cycles for which a
cell remembers the received Pings and Acknowledge-
ments.

PingFailThreshold (7 bits) — a percentage representing
the number of Ping messages lost in the last History
cycles including the current cycle.

PingSuccessThreshold (7 bits) — a percentage repre-
senting the number of Ping messages received in the
last History cycles including the current cycle.



AckSuccessThreshold (7 bits) — a percentage represent-
ing the number of Acknowledgements messages re-
ceived in the last History cycles including the current
cycle.

RecoveryThreshold, π (5 bits) — number of cycles the
recovery condition must hold for communication re-
covery to start.

RecoveryInertia (6 bits) — number of cycles in which
a cell continues to communicate with its neighbours
while recovering.

Time to live, τ (3 bits) — number of times a Connect
message is sent before being discarded.

EnableShutdown (1 bit) — a Boolean variable indicat-
ing whether a cell shutdown functionality is enabled.

EnableAcks (1 bit) — a Boolean variable indicating
whether a cell has the ability to send and receive
Acknowledgements messages.

4.2 Fitness/Objective Function

The evolution of recovery membranes is based on
spatiotemporal metrics incorporated within a fitness
(objective) function. The analysis presented by
(Foreman et al., 2003) used two metrics to characterise
stability of emergent impact boundaries: spatial and
temporal.

The spatial metric is based on the variance in the size
of the connected boundary-fragment (CBF). A CBF is
simply a set F of cells in the closed state Sc such that
every cell in F is connected with at least one other cell in
F, and there exists no cell outside F, which is connected
to at least one cell in F (an analogue of a maximally con-
nected sub graph or a graph component). We calculate
the maximum size Hsp(t) of CBF’s in self-organising im-
pact boundaries at each cycle. Its variance σ2

sp over time
is then used as a spatial metric within the objective func-
tion. This metric, as mentioned before, is inspired by
random graphs theory and is intended to capture spatial
connectivity in impact boundaries. A continuous bound-
ary may, however, change its shape over time, without
breaking into fragments, while keeping the size of CBF
almost constant. Therefore, a temporal metric that mea-
sures the diversity of cell transitions (analogously to cel-
lular automata input-entropy or the Ω measure used to
characterise flocking behaviour) may be complementary.

In order to analyse temporal persistence, we consider
state changes in each cell at every time step. Given 6
symmetric boundary links possible in each square cell
(“left-right”, “top-bottom”, “left-top”, etc.), there are
26 possible boundary states (including “no-boundary”),
and m = 212 transitions. The entropy Htemp(t) of a
particular frequency distribution Si(t), where t is a time

Figure 5: A chaotic boundary with Hsp ≤ 16 and zero-length

communication ρ. A membrane does not form at all. Both

σ2

sp and σ2

temp are low-to-medium.

step, and i is a cell transition index: 1 ≤ i ≤ m, can be
calculated as follows:

Htemp(t) = −

m
∑

i=1

Si(t)

n
log

Si(t)

n
,

where n is the total number of cells, and Si(t) is the num-
ber of times the transition i was used at time t across all
cells. Again, the variance σ2

temp of the entropy Htemp(t)
over time is used as a temporal metric within the objec-
tive function.

Our task is complicated by the fact that emergent
structures are characterised by a phase transition de-
tectable by either σ2

sp or σ2

temp, rather than a particular
value range. Therefore, simply rewarding low values for
these entropy-based metrics would be insufficient. In
particular, it has been observed (Foreman et al., 2003)
that both metrics are low-to-medium for algorithms with
zero-length communication ρ (tropistic algorithms and
chaotic regimes — Figure 5), increase dramatically for
ρ in the range 1 ≤ ρ ≤ ρ0, where ρ0 is a critical value
at and below which complex unstable behaviours occur
(Figure 6), and undergo a phase transition to very low
values when ρ > ρ0 (hysteretic algorithms and ordered
regimes).

The critical value ρ0 is, of course, dependent on all
other parameters used by the algorithm. Nevertheless,
the chaotic regimes, which are more stable simply due
to a small number of connections, can often be identified
by a low average Hsp of the maximum sizes Hsp(t) of
CBF’s in impact boundaries, ruling out at least zero-
length histories. In particular, impact boundaries with
the average Hsp ≤ 16 can be safely ruled out — the



Figure 6: An unstable boundary with ρ close to its critical

value. The membrane is fragmentary. Both σ2

sp and σ2

temp

are close to their peaks: the phase transition.

resulting chaotic patterns, illustrated in Figure 5, are of
no interest.

On the other hand, a preference among ordered
regimes towards shorter histories is another useful iden-
tifier of a phase transition and the critical value ρ0.
Besides, a shorter communication history ρ enables a
quicker response, as do lower values of τ and π. Thus,
our first experiment used minimisation of the following
objective function:

fsp(β) =

{

M if Hsp ≤ 16;
4.0 σ2

sp + ρ + τ + π + β Hsp if Hsp > 16,

where M is the maximal integer value provided by the
compiler. The coefficient β reflects the relative impor-
tance of the length of impact boundaries in the objective
function — sometimes, it may be as important to obtain
smallest possible impact perimeter as it is to maintain a
shortest possible communication history. We alternated
between β1 = 0.25 and β2 = 2.0.

The second experiment focussed on temporal metric
σ2

temp embedded in the objective function ftemp(β) con-
structed analogously to the function fsp(β):

ftemp(β) =







M if Hsp ≤ 16;
105 σ2

temp + ρ + τ + π +

+ β Hsp if Hsp > 16.

Finally, our ultimate objective function is defined as fol-
lows:

f(β) =







M if Hsp ≤ 16;
1

2
(4.0 σ2

sp + 105 σ2

temp) +

+ ρ + τ + π + β Hsp if Hsp > 16

Each experiment involves an impact at a predefined
cell, and lasts 500 cycles; the first 30 cycles are excluded
from the series Hsp(t) and Htemp(t) in order not to pe-
nalise longer history lengths ρ. We repeat the exper-
iment 3 times for every chromosome and average the
objective (fitness) values obtained over these runs.

4.3 Selection

We have chosen a generation gap replacement strategy
hoping to use better search capabilities offered by the
generational replacement and faster convergence typi-
cally provided by the steady state selection. Some of this
faster convergence, however, may be explained by the
stochastic nature of the selection operator: the rate of ge-
netic drift in steady state selection is twice that of gener-
ational selection (Rogers and Prügel-Bennett, 1999). In
our experiments, we set the generation gap parameter
G = 0.2. In other words, the entire old population
(40 chromosomes) is sorted according to fitness, and we
choose the best 20% for direct replication in the next gen-
eration, employing an elitist selection mechanism. The
selection phase and recombination (crossover) phase can
be merged (Thierens and Goldberg, 1994). We follow a
similar approach but still explicitly keep the selection
phase replicating the elitist offspring. The rest of selec-
tion functionality is moved into the crossover.

4.4 Crossover and Mutation

We used a variation of the n-point crossover, where
the probability of having n points in the crossover de-
pends on the fitness of the chromosome. We choose this
since there are benefits of having a low and high n-point
crossover, enabling a better exploration in the search
space. Our variation involves three different crossovers,
each having an equal probability of contributing to the
generation of new chromosomes. In other words, after
the elite takes 20% of the new population, for each re-
maining place we randomly perform a crossover chosen
among the following three:

Elitist driven: parent 1 is randomly chosen from the
best performing 20% of the old population and parent
2 is randomly chosen from the entire old population,
followed by a low 1- to 2-point crossover (the number
of points is determined randomly). This low-point
crossover is used here since it makes sense to disturb
an elitist-driven solution as little as possible.

Mid-range: parent 1 is randomly chosen from the next
20% - 50% of the old population and parent 2 is ran-
domly chosen from the entire old population, followed
by a medium 1- to 4-point point crossover (the num-
ber of points is determined randomly as well). This
medium-point crossover is more applicable when it
makes sense to disturb a mediocre solution.



Figure 7: A large checkered-pattern membrane, with short

hysteresis, within a morphing but closed and continuous

boundary (β = 0.25). Both σ2

sp and σ2

temp are low.

Remainder: parent 1 is randomly chosen from the worst
performing 50% of the population and parent 2 is
randomly chosen from the entire old population, fol-
lowed by a high 1- to 7-point crossover, potentially
disrupting an under-fit solution a lot in order to enter
a new search region.

A feature of this multi-point crossover is that the first
gene is always inherited from parent 1. We also ensure
that offspring generated from the crossover is unique. We
use a slightly higher than typical mutation rate: each
bit in the chromosome has a 0.04 probability of being
flipped. We also ensure that the mutation results in
a unique chromosome by repeating mutation if the pro-
duced chromosome already exists in the new population.
Mutation is not performed on the chromosome generated
via elitist selection.

5. Experimental Results

Our first experiment minimising the objective function
fsp(0.25) was mainly concerned with spatially connected
and stable impact boundaries, and the form taken by
corresponding recovery membranes. The length of the
boundary was of lesser importance. Not surprisingly,
the evolved solution achieved long robust and continu-
ous impact boundaries with Hsp = 40 (Figure 7), around
large impact-surrounding regions, while requiring fairly
short hysteresis: ρ = 2 and π = 5. The stabilisation
of an impact boundary around a large region occurs at
the periphery of the communication damage, where the
probability Pfailure falls to 0 due to the error correction
code, and the process has a cascading nature, where the
boundary expands to eventually cover all the impact-

Figure 8: A small membrane, with long hysteresis, within a

regular octagonal boundary (β = 2.0). Both σ2

sp and σ2

temp

are very low.

surrounding region. Interestingly, the evolved continu-
ous boundaries may change their shape and only rarely
stabilise as a regular octagon, while keeping their length
Hsp = 40 constant. The emergent recovery membrane
evolved to separate boundary from the recovering cells.
It has a checkered pattern that can be explained by the
opposing nature of the conditions (vi) and (vii), and the
short hysteresis enabling oscillations between recovery
and scaffolding states.

On the other hand, minimisation of fsp(2.0) resulted
in more compact impact-surrounding regions (Hsp = 32,
Figure 8) and thinner membranes, at the expense of
longer hysteresis: ρ = 6 and π = 4. These boundaries
morph as well, but generally keep the shape of a regular
octagon. Interestingly, the second experiment produced
a typical speciation, where the longer hysteresis solu-
tions took only one niche, while shorter hysteresis ρ = 2
and π = 4 solutions co-evolved into a separate niche,
both niches evolving compact regions with boundaries
Hsp = 32. This supports our conjecture that the em-
ployed generational gap selection with G = 0.2 counter-
acts the genetic drift to a reasonable degree.

Both solutions favoured τ = 1 as expected for square
cells (while triangular cells require at least τ = 2 to
achieve continuity). Also, the evolved cells prefer to send
Acknowledgements (EnableAcks = 1) and stop trans-
mitting in scaffolding state (EnableShutdown = 1).
Without the latter feature membranes would not emerge,
and the recovering cells would disrupt the boundaries.

The second pair of experiments focussed on evolving
temporally stable boundaries, minimising ftemp(0.25)
and ftemp(2.0). These experiments produced results very
similar to the ones obtained by minimising the spatial
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Figure 9: The functions fsp(0.25), ftemp(0.25) and f(0.25).

metric. In particular, two types of boundaries evolved,
one with a shorter hysteresis (ρ = 2 and π = 8) and
longer boundaries Hsp = 40, and the other with a longer
hysteresis (ρ = 6 and π = 4) and shorter boundaries
Hsp = 32. Both solutions involve membranes, the main
difference being that even the shorter hysteresis solutions
with longer boundaries tend to reach and retain the reg-
ular octagon shape. However, sometimes the boundary
fragments. These outcomes are expected for an objective
function rewarding temporal stability.

The final pair of experiments combined the spatial and
temporal metric, minimising f(0.25) and f(2.0). Again,
both types: (Hsp = 40, ρ = 2, π = 8) and (Hsp = 32,
ρ = 6, π = 8) were produced. As expected, the evolved
membranes and boundaries were more stable, and had
a regular octagon shape in both cases, mostly without
morphing or fragmenting.

As mentioned above, the case β = 0.25 results in
longer boundaries that are capable of morphing with-
out breaking into fragments. The objective functions
fsp(0.25), ftemp(0.25) and f(0.25) for the most fit indi-
vidual in each generation are plotted in Figure 9. All
plots exclude the initial period (20 generations) of the
rapid decrease typical for GA-based exploration of the
search-space. The function fsp(0.25) converges well but
does not explore the search-space considerably. This is so
because it uses the spatial metric and, therefore, rewards
the boundary’s continuity, ignoring morphing instability
— which is “allowed” in this case. On the contrary, the
function ftemp(0.25) attempts to minimise morphing in-
stability and has to explore a large part of the space.

The objective functions fsp(2.0), ftemp(2.0) and f(2.0)
are plotted in Figure 10. The case β = 2.0 results in
shorter boundaries that cannot morph without breaking
into fragments, so any instability leads to fragmentation.
Consequently, the function ftemp(2.0) shows the con-
vergence within a narrower band — it uses the tempo-
ral metric and rewards persistence, ignoring occasional
fragmentations. Its counterpart, the function fsp(2.0),
specifically puts selection pressure on continuity, leading
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Figure 10: The functions fsp(2.0), ftemp(2.0) and f(2.0).

to a wider exploration and poorer convergence.

Importantly, the functions f(0.25) and f(2.0), using
spatiotemporal metrics, provided a good compromise in
both cases. The experiments confirmed that the choice of
an objective function depends on the main task: when
the target is not only continuity of impact boundaries
but also their shape, then the spatiotemporal metric is
more suitable. On the other hand, if morphing is accept-
able, then a spatial metric capturing connectivity rather
than shape is sufficient. Similarly, a temporal metric
may be better suited for a general shape design if spo-
radic fragmentations are tolerable.

6. Conclusion

In this paper we suggested and verified a methodol-
ogy underlying design of localised algorithms for com-
plex multi-agent systems, exemplified by self-monitoring
aerospace vehicles. We started by briefly describ-
ing a multi-agent algorithm leading to emergence of
impact boundaries and recovery membranes, followed
by quantitative measurement of spatiotemporal stabil-
ity of the emergent patterns. The graph-theoretic
and information-theoretic metrics, capable of identify-
ing phase transitions, contributed to fitness functions for
evolutionary modelling of boundaries and membranes.
The produced results are promising and demonstrate
the possibility for a multi-objective design of localised
algorithms. In particular, the desired response time as
well as size (and potentially, shape) of impact boundaries
and membranes may be specified in advance, leaving the
precise logic and parameterisation of the localised algo-
rithms to selection pressures. We believe that the pro-
posed methodology is well suited to the design at the
edge of chaos, where the design objective (e.g., a specific
shape) may be unstable, while other parameters (e.g. the
response time) may be optimal. The presented methods
should increase the reliability of the design of complex
multi-agent systems, accounting for emergent patterns
that are not easily predictable by human designers.
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