Local measures of information storage in complex distributed computation
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Information storage is a key component of intrinsic distributed computation. Despite the existence
of appropriate measures for it (e.g. excess entropy), its role in interacting with information transfer
and modification to give rise to distributed computation is not yet well-established. We explore
how to quantify information storage on a local scale in space and time, so as to understand its role
in the dynamics of distributed computation. To assist these explorations, we introduce the active
information storage, which quantifies the information storage component that is directly in use in
the computation of the next state of a process. We present the first profiles of local excess entropy
and local active information storage in cellular automata, providing evidence that blinkers and
background domains are dominant information storage processes in these systems. This application
also demonstrates the manner in which these two measures of information storage are distinct but
complementary. It also reveals other information storage phenomena, including the misinformative
nature of local storage when information transfer dominates the computation, and demonstrates
that the local entropy rate is a useful spatiotemporal filter for information transfer structure.
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I. INTRODUCTION

Information storage is considered an important aspect
of the dynamics of many natural and man-made pro-
cesses, for example: in human brain networks [22] [46]
and artificial neural networks [4], synchronisation be-
tween coupled systems [5 [42], coordinated motion in
autonomous [I] and modular robots [43], attractor dy-
namics of cellular automata [37], and in the dynamics of
inter-event distribution times [I3]. Despite the existence
of suitable quantitative measures for information storage
(e.g. the excess entropy [§]), the term is still often used
rather loosely or in a qualitative sense. A major factor
here is that there is not yet a well-established quantita-
tive understanding of how information storage dynam-
ically interacts with information transfer and modifica-
tion to give rise to intrinsic distributed computation in
multivariate systems.

In this paper we explore methods to quantify informa-
tion storage in distributed computation. In particular,
we focus on how information storage can be quantified
on a local scale in space-time, which allows us to directly
investigate the role of information storage in the dynam-
ics of distributed computation.

We focus on cellular automata (CAs) which, as de-
scribed in Section [T} are a popular model of distributed
computation in which the notion of information storage
is qualitatively well-understood. Indeed, the emergent
structures in CAs known as “blinkers” have been conjec-
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tured to implement information storage, and we hypoth-
esise that appropriate quantification of the dynamics of
information storage will align with this conjecture.

We define the concept of information storage as the in-
formation in an agent, process or variable’s past that can
be used to predict its future. We consider such storage in
the intrinsic computation of the unfolding of a system’s
dynamics [I1], which takes place regardless of whether
it is explicitly interpretable as a computation to an ob-
server. We describe in Section [[V]how total storage rele-
vant to the future of a process is captured by the existing
measure statistical complezity [9], while the total storage
actually used in the future of a process is captured by the
existing measure ezcess entropy [8]. We then introduce
active information storage in Section [V] to capture the
amount of storage that is currently in use by a process.
Our perspective of distributed computation is important,
providing the perspective that information can not only
be stored internally by an agent or element implementing
the computation, but also stored in its environment for
later retrieval.

We present the first application of local profiles of the
excess entropy and the active information storage to cel-
lular automata in Section [Vl As hypothesised above,
these applications provide the first quantitative evidence
that blinkers are the dominant information storage enti-
ties there. This result is significant in marrying these
quantitative measures of information storage with the
popularly-understood qualitative notion of its embodi-
ment in distributed computation. These measures also
reveal other important local information storage phe-
nomena, including the misinformative nature of storage
when information transfer dominates the computation.
Our application also demonstrates the manner in which
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these two measures of information storage are distinct
but complementary, revealing different aspects of the in-
formation dynamics. Finally, we demonstrate that the
entropy rate, a complementary measure to the active in-
formation storage, is a useful filter for viewing moving
particle structures in CAs.

II. CELLULAR AUTOMATA

Information storage has been a topic of interest in the
context of distributed computation in cellular automata
(CAs). As we will describe, the notion of information
storage is qualitatively well-understood with regard to
CAs, and as such we choose these as our application do-
main.

CAs are discrete dynamical lattice systems involving
an array of cells which synchronously update their states
as a homogeneous deterministic function (or rule) of the
states of their local neighbours [51]. Here we will use Ele-
mentary CAs (ECAs), which consist of a one-dimensional
array of cells with binary states, with each updated as
a function of the previous states of themselves and one
neighbour either side (i.e. neighbourhood size 3 or range
r =1). CAs are widely used to study complex computa-
tion, since certain rules (e.g. ECA rules 110 and 54, de-
fined using the Wolfram numbering scheme [51]) exhibit
emergent coherent structures which are not discernible
from their microscopic update functions but which pro-
vide the basis for understanding the macroscopic compu-
tations being carried out [39) [52].

These emergent structures are known as particles, glid-
ers and domains. A domain may be understood as a set
of background configurations in a CA, any of which will
update to another such configuration in the absence of a
disturbance. The most simple domain types involve peri-
odic repetition of cell states in time and space. Domains
are formally defined within the framework of computa-
tional mechanics [I8] as spatial process languages in the
CA. Particles are qualitatively considered to be moving
elements of coherent spatiotemporal structure, in con-
trast to or against a background domain. Gliders are
particles which repeat periodically in time while moving
spatially, while stationary gliders are known as blinkers.
Formally, particles are defined as a boundary between
two domains [I8]; as such, they can also be termed as
domain walls, though this is typically used with refer-
ence to aperiodic particles (e.g. those in rule 18).

There are several long-held conjectures regarding the
role of these emergent structures in the intrinsic dis-
tributed computation in CAs; i.e. how the cells process
information in order to determine their collective future
state [25], 39]. Blinkers are generally held to be the dom-
inant information storage elements, since local pattern
maintenance is an information storage process. In con-
trast, particles are held to be the dominant information
transfer entities, since they communicate coherent infor-
mation about the dynamics in one area of the system to

another (indeed, we have provided the first direct quan-
titative evidence for this conjecture with a measure of
local information transfer in [31]). Studies of the den-
sity classification task with rule ¢pq, [B9H41] help our
intuition here. They suggest a human-understandable
computation, with stationary blinkers used to store in-
formation about the local density of “1”’s in one region
of the CA, while moving gliders are used to transfer in-
formation about these local densities between regions.

The presence of such emergent structure in CAs is re-
vealed by filtering techniques, which highlight particles
against the background domain. Early methods were
hand-crafted for specific CAs (relying on the user know-
ing the pattern of background domains) [I4] [I7], while
later methods can be automatically applied to any given
CA. These include: finite state transducers to recognise
the regular spatial language of the CA using e-machines
[18,[19]; local information (i.e. local spatial entropy rate)
[20]; the display of executing rules with the most fre-
quently occurring rules filtered out [52]; and local statis-
tical complexity (via a light-cone formulation) and local
sensitivity [45].

Certainly, filtering is not a new concept, however the
ability to separately filter different computational fea-
tures is novel. For example, we have previously used
local information transfer to filter moving particle struc-
tures in CAs [31], and a measure of local information
modification to filter particle collisions in [32]. Here, we
hypothesise that local measures of information storage
should be useful filters for blinker structures: this would
provide the first quantitative evidence for their compu-
tational role as dominant information storage structures
in CAs. Together with our work regarding local informa-
tion transfer [31] and information modification [32], the
investigation of local information storage will show how
these operations interrelate to give rise to complex be-
haviour, in comparison to other filters which give only a
single view of where that complexity occurs. This would
allow a more refined investigation than single measures,
and should reveal interesting differences in the parts of
the emergent structures that are highlighted. Further-
more, this set of measures will be generally applicable to
any multivariate time-series, unlike some of the filtering
measures above (e.g. spatial e-machines [I8],[19] and spa-
tial entropy rate [20]) which are only applicable to lattice
systems.

Similarly, we note the suggestion of alternative filters
to ours for stored, transferred and modified information
in CAs in [I2], using redundant, unique and synergis-
tic terms from the Partial Information Decomposition
framework [48]. However while this framework certainly
provides interesting insights into the sub-components of
information storage and transfer (e.g. in [49]), and while
these filters reveal unique insights into the dynamics of
CAs, these filters are not readily interpretable as informa-
tion storage and transfer measures. In particular regard-
ing information storage, the use of spatial redundancy
measures will only capture certain types of storage dy-



namics associated with spatial periodicities, e.g. it will
not capture individualistic storage behaviour where each
variable in a distributed system is exhibiting independent
behaviour. This issue is underlined in that while these
filters work well for the simple CA rule 184, the results
for the more complex rule 54 do not cleanly separate for
example gliders from the background; more importantly,
the results for this rule are simply not consistent with
the popular understanding of blinkers and domains as
information storage and gliders as information transfer.

III. INFORMATION-THEORETIC
PRELIMINARIES

Information theory [36] is the natural domain to de-
scribe information storage in distributed computation,
and indeed information theory is proving to be a use-
ful framework for the analysis and design of complex
systems. The fundamental quantity is the (Shannon)
entropy, which represents the uncertainty in a sample
x of a random variable X: Hx = —) p(x)log,p(z)
(all with units in bits). The joint entropy of two ran-
dom variables X and Y is a generalization to quan-
tify the uncertainty of their joint distribution: Hxy =
- Zm’yp(x,y) log, p(z,y). The conditional entropy of X
given Y is the average uncertainty that remains about
z when y is known: Hx)y = —>_,  p(z,y)log, p(z|y).
The mutual information between X and Y measures the
average reduction in uncertainty about z that results
from learning the value of y, or vice versa:

IX;y:foHX‘y. (1)

The conditional mutual information between X and Y
given Z is the mutual information between X and Y
when Z is known: Ix,y|z = Hx|z — Hx|y,z-

Finally, the entropy rate is the limiting value® of the
conditional entropy of the next state of X (i.e. mea-
surements ,1 of the random variable X’) given knowl-
edge of the previous k states of X (i.e. measurements
) = {Tn—k+1,--+sTn—1,%n}, up to and including time
step 7, of the random variable X (%¥)):

H,x = klggo Hyrxo = klggo Hyx(k), (2)
H,x(k) = Hxx+y — Hxmw. (3)

Note that H,,x (k) denotes a finite-k estimate of H,x.
We note that the above information-theoretic measures
compute expectation values of each quantity over all pos-
sible configurations of the considered variables, or equiv-
alently are averages over each observation. As such, we

1 We note that while these limiting values exist (i.e. the average
entropy rate converges) as k — oo for stationary processes (e.g.
see [7]), there is no guarantee that such limits exist for non-
stationary processes.

can consider the local or pointwise values of each quan-
tity at each time step or observation. As an illustrative
example of local measures, consider that the (average)
entropy Hx defines the average uncertainty or informa-
tion in X; the local entropy hx(n 4+ 1) quantifies the
amount of information contained in a specific observa-
tion or realization x,4; of the variable X at time step
n + 1 of the process:

hx(n+1) = h(zni1) = —logy p(Tni1). (4)

For a lattice system with spatially-ordered variables, we
can write the local entropy for the value z;,41 at time
step n + 1 of variable i as:

h(i,n+1) = h(zin+1) = —logy p(Tins1).  (5)

As pointed out above, the average entropy is the expec-
tation value of the local entropy; as such we have:

Hx = (hx(n)),, (6)
H(i) = (h(i,n)),, » (7)
and in homogeneous systems H = (h(i,n)), ..

Similarly, the local temporal entropy rate estimate is
represented as:

hux(n+1) :lem hux(n+1,k), (8)
hux (n+1,k) = h(wnga | 2)) = —logy (e | 2).
9)
In local lattice notation we can write the estimates as:
hu(i,n+1,k) = h(@;ni | xEkTZ) = —logy p(zint1 | a:fkrz)
(10)

L H,(ik) =
and in homogeneous systems H,(k) =

Again, we have H,x (k) = (hux(n,k))
(hu(i,n, k),
(hyu(i;n, k), .. Importantly, since p(zn41 | x%k)) <1 the
local temporal entropy rate h,x(n + 1,k) > 0. As per
Appendix [A] the local entropy rate can only be shown to
converge (i.e. reach a limiting value as k — oo) under
more restrictive conditions? than the known conditions
(e.g. see [7]) for convergence of the average entropy rate.

Importantly, local or pointwise values are directly at-
tributable to the dynamics at each time step, in compar-
ison to sliding window averaging techniques which pro-
vide a measure more localised than averages over long
time periods but still blur out precise temporal dynam-
ics. An additional problem occurs when, in an effort to
try to keep the sliding window average well-localised, the
observation set size is kept small (e.g. six samples for
the large multivariate sample space in [12]) leading to
undersampling.?

2 I.e. convergence occurs for processes with finite order Markovian
dependence on their past. Until less restrictive conditions can be
established (if possible), one must be careful in using the local
quantities since they may not converge as k — oo.

3 Sliding window measurements could in principle use a larger



IV. EXCESS ENTROPY AS TOTAL
INFORMATION STORAGE

Discussion of information storage or memory in CAs
has often focused on periodic structures (particularly in
construction of universal Turing machines), e.g. [25].
However, information storage does not necessarily entail
periodicity. The excess entropy more broadly encom-
passes all types of structure and memory by capturing
correlations across all lengths of time, including non-
linear effects. In Section [VA] we describe the excess
entropy and the manner in which it measures the total
information storage that is used in the future of a process.
We then review in Section [[VB] how the excess entropy
can be used to measure single-agent and collective infor-
mation storage. We also discuss how information storage
in an agent’s environment in a distributed computation
increases its information storage capacity beyond its in-
ternal capability. Subsequently in Section [[VC| we de-
scribe how the excess entropy can be localised in time
and space.

A. Excess entropy

Grassberger [16] first noticed that a slow approach of
the entropy rate to its limiting value was a sign of com-
plexity. Formally, Crutchfield and Feldman [8] use the
conditional entropy form of the entropy rate (Eq. )4
to observe that at a finite block size k, the difference
H,x (k) — H,x represents the information carrying ca-
pacity in size k-blocks that is due to correlations. The
sum over all k gives the total amount of structure in
the system, quantified as excess entropy® (measured
in bits):

Ex =" [Hux (k) — Hux). (11)
k=0

The excess entropy can also be formulated as the mu-
tual information between the semi-infinite past and semi-
infinite future of the system:

k—o0
Ex(k) = X (k) x (k1) (13)

number of observations or samples to determine the relevant
probability distribution functions (PDFs) than the number of
evaluations averaged over for the measure (e.g. evaluate and av-
erage say five local entropy values, but with the PDF's estimated
from 100 observations). However in most cases the observation
and evaluation set is the same.

4 H, x (k) here is equivalent to h,(L — 1) in [8]. This means the
sum in Eq. starts from k = 0 as equivalent to L = 1.
The excess entropy was originally termed the “effective measure
complexity” by Grassberger in [16].

4

where X(*") is the random variable (with measurements
a:gc_:l) ={Zn+1,Tnt2, ..., Tntk}) referring to the k future
states of X (from time step n+ 1 onwards). The two for-
mulations of Ex in Eq. and Eq. are equal in
the limit k¥ — oo (see Appendix 7 in [§]) though do not
necessarily provide the same estimate at finite-k. Now,
this second formulation in Eq. is known as the pre-
dictive information [3], as it highlights that the excess
entropy captures the information in a system’s past which
can be used to predict its future. From the perspective
of distributed computation, the excess entropy can thus
be seen to measure the information from the past of the
system that is used at some point in the future. This is
significant as it is explicitly consistent with the interpre-
tation of the excess entropy as the amount of structure
or memory in the system.

We note that the excess entropy is directly related
to several known measures of complexity, including the
Tononi-Sporns-Edelman complexity [47] (as described in
[2]). Most important here is that it contrasts with the
statistical complezity [9], which measures the amount of
information in the past of a process that is relevant to
the prediction of its future states. It is known that the
statistical complexity C},x provides an upper bound to
the excess entropy [44]; i.e. Ex < C,x. This can be in-
terpreted in that the statistical complexity measures all
information stored by the system which may be used in
the future, the excess entropy only measures that infor-
mation which is used by the system at some point in the
future. In this paper, we will focus on measuring only
the excess entropy at local spatiotemporal points, since
in our aim to understand the dynamics of information
storage in distributed computation, we must focus here
on how information storage is dynamically used. We plan
to examine local profiles of the statistical complexity in
future work. We note that the light-cone formulation of
the statistical complexity has previously been examined
at local spatiotemporal points [45], yet this formulation
is not as readily interpretable as information storage for a
single agent, and is not directly comparable to the single-
agent perspective examined for excess entropy here.

B. Single-agent and collective excess entropy

We use the term single-agent excess entropy (or just
excess entropy) to refer to measuring the quantity Ex
for individual agents X or cells X; using their one-
dimensional time series of states. This is a measure of
the average memory for each agent.

The predictive information form in Eq. , Ex(k) =
Iy ). x+), shows that the maximum excess entropy is

the information capacity in sequences of k states X %), In
ECAs for example, this is 2¥ bits. In the limit k& — oo,
this becomes infinite. Mathematically then, the infor-
mation stored by a single agent can be larger than the
information capacity of a single state. Where the agent



takes direct causal influence from only a single past state
(as in CAs), the meaning of its information storage being
larger than its information capacity is not immediately
obvious. For instance, a cell in an ECA could not store
more than 1 bit of information in isolation. However,
the cells in a CA are participating in a distributed com-
putation: cyclic causal paths (facilitated by bidirectional
links) effectively allow cells to store extra information
in neighbours (even beyond the immediate neighbours),
and to subsequently retrieve that information from those
neighbours at a later point in time. While measurement
of the excess entropy does not explicitly look for such
self-influence communicated through neighbours, it is in-
deed the channel through which a significant portion of
information can be communicated. This self-influence
between semi-infinite past and future blocks being con-
veyed via neighbours is indicated by the curved arrows in
Fig. There are parallels here to the use of stigmergy
(indirect communication through the environment, e.g.
see [23] 24]) to communicate with oneself, if one con-
siders neighbours to be part of the environment of the
agent. Indeed, because information may be stored and
retrieved from one’s neighbours, an agent can store in-
formation regardless of whether it is causally connected
with itself.

Information storage exceeding single-state information
capacity is then a perfectly valid result. Indeed in an
infinite CA, each cell has access to an infinite number
of neighbours in which to store an infinite amount of
information that can later be used to influence its own
future. Since the storage medium is shared by all cells
though, one should not think about the total memory as
the total number of cells N multiplied by this amount
(i.e. to give NEx).

The average total memory stored for future use in a
collective of agents (e.g. a set of neighbouring cells in
a CA) is properly measured by the collective excess en-
tropy. It is measured as temporal excess entropy of the
agents using their two-dimensional time series of states.
It is a joint temporal predictive information, i.e. the mu-
tual information between the joint past X*) and future
X*") of the agents:

EX = kli{lgo Ix(k);x(k-%—), (14)

This collective measurement takes into account the in-
herent redundancy in the shared information storage

6 Information storage can also be measured here even when there
is no causal path from an agent to itself via other agents (e.g.
the agent may simply continually copy the value of another agent
whose process involves information storage). Under our perspec-
tive of distributed computation, the measure simply captures ap-
parent information storage which supports the process, whether
that storage is in the agent itself, distributed via its neighbours,
or is otherwise intrinsic to the process itself. The distinction
between the perspectives of computation and causal effect is ex-
plored in [29].

medium (which NEx does not). Collective excess en-
tropy could be used for example to quantify the “undis-
covered collective memory that may present in certain
fish schools” [6].

Grassberger found divergent collective excess entropy
for several CA rules, including rule 22 [I5 [16].” This
infinite amount of collective memory implies a highly
complex process, since in using strong long-range cor-
relations a semi-infinite sequence “could store an infinite
amount of information about its continuation” [26]. On
the other hand, infinite collective excess entropy can also
be achieved for systems that only trivially utilise all of
their available memory.® In attempting to quantify local
information dynamics of distributed computation here,
our focus is on information storage for single agents or
cells rather than the joint information storage across the
collective. Were the single-agent excess entropy found to
be divergent (this has not been demonstrated), this may
be more significant than for the collective case. This
is because it would imply that all agents are individu-
ally strongly utilising the resources of the collective in a
highly complex process. Crutchfield and Feldman mea-
sure the excess entropy in spatially-extended blocks in
various CAs in an ensemble study in [I1], however this is
not an information storage since the measurement is not
made temporally.

Our focus here is on locally quantifying information
storage (temporally) in both time and space. We hypoth-
esise this will provide much more detailed insights than
single ensemble values into information storage struc-
tures and their involvement in distributed computation.

C. Local excess entropy

The local excess entropy is a measure of how much
information a given agent is currently storing for future
use at a particular point in time. To derive it, note that
(as per Eq. @) the excess entropy of a process is actually
the expectation value of the local excess entropy for the
process at every time step [44]. This is as per Shalizi’s
original formulation of the local excess entropy in [44],
however our presentation is for a single time-series rather
than the light-cone formulation used there (such that we
focus on the use of that time-series’ past alone in the
computation of its future).

Using the predictive information formulation from

7 Lindgren and Nordahl [26] also measured excess entropy (referred
to as effective measure complexity) for some ECAs. They mea-
sured spatial excess entropies however, and we note that it is only
temporal excess entropies which are interpretable as information
storage from our perspective of distributed computation.

8 For example, a CA (with infinite width) that simply copied cell
values to the right would have infinite collective excess entropy
when started from random initial states, yet this is clearly a
trivial use of this storage.
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FIG. 1: Measures of single-agent information storage in distributed systems. @ Excess entropy: total information from the
cell’s past that is used at some point in its future. @ Active information storage: the information storage that is currently
in use in determining the next state of the cell. The stored information can be conveyed directly through the cell itself or via

neighbouring cells.

Eq. , the local excess entropy ex(n + 1) of a pro-

cess is simply the local mutual information between the

() (k1)

semi-infinite past x5, and future z,;, { at the given time

step n + 1:
Ex =(ex(n+1)),, (15)
ex(n+1) = lim i(a{:al), (16)
k kT
p(xgl )7$£z+1))

ex(n+1) = klirgo log, G (17)

p(n)p(Ty54 1)

Certainly the formulation of entropy rate overes-
timates in Eq. could be used to directly
form alternative localisations, e.g. ey(n + 1) =
Yoreolhux(n+1,k) — hyx(n+1)]. Indeed, in the limit
k — oo the averages of these localisations E'x will be the
same. However, these two localisations will produce dif-
ferent results for each time step n in general. We measure
only the local formulation from the predictive informa-
tion in Eq. 7 because this form uniquely, explicitly
captures the total information stored for future use at a
particular temporal point, which is our quantity of inter-
est here due to our focus on local information storage.’
The limit £ — oo is an important part of the above
definition (carried over from Eq. ), since correlations
at all time scales should be included in the computation
of information storage. Since this is not computationally

9 We note that this is in spite of the fact that the finite-k esti-
mates Ex (k) from Eq. are better estimators than those from
Eq. [8]: interpretability of information storage properties is
more important for our purposes.

feasible in general, we retain the following notation for
finite-k estimates:

Ex(k) = (ex(n+1,k)),, (18)
ex(n+1,k) = i(@®;2¥)), (19)
(k) (k")
— log, 2 1 Tn+1) <3(C:) x"jkiz , (20)
p(zn)p(Ty5 1)
eX(nJrl):klim ex(n+1,k). (21)
—00

We discuss the requirements for ex (n, k) to converge to
a limiting value with & — co in Appendix [A]

The notation is generalised for lattice systems (such as
CAs) with spatially-ordered agents to represent the local
excess entropy for cell 7 at time n + 1 as:

k kT
p(ah) 2l )

e(i,n+1) = lim log, — e (22)
koo p(atp(al))
= lim e(i,n+ 1,k). (23)
k—o0

Local excess entropy is defined for every spatiotemporal
point (i,n) in the system (where 7 is a spatial index and n
is a time index). Note that the collective excess entropy
Ex can also be localised, but only in time, to have ex (n+
1,k).

While the average excess entropy is always positive,
the local excess entropy may in fact be positive or nega-
tive, meaning the past history of the cell can either posi-
tively inform us or actually misinform us about its future.
An observer is misinformed where the semi-infinite past
and future are relatively unlikely to be observed together
as compared to their independent likelihoods. In other
words, an observer is misinformed by the past when the



observed future is conditionally less likely given the ob-

served past than without considering the past. In this

situation we have p(xgc:l) | x%k‘)) < p(:cgfl)) making the

denominator of Eq. greater than the numerator, and
giving a negative value for ex(n + 1).

V. ACTIVE INFORMATION STORAGE AS
STORAGE DIRECTLY IN USE

The excess entropy measures the total stored informa-
tion which will be used at some point in the future of the
state process of an agent. This information will possibly
but not necessarily be used at the next time step n + 1.
Since the dynamics of computation unfold one step at a
time, we are quite interested in how much of the stored
information is actually in use at the next time step when
the new process value is computed. As can be seen in
extensions of this work [31) [32], this is particularly im-
portant in understanding how stored information inter-
acts with information transfer in information processing.
As such, we derive active information storage Ax as
the average mutual information between the semi-infinite
past of the process X *) and its neat state X', as opposed
to its whole (semi-infinite) future:

k—o00
AX(k) = IX(]");X/' (25)

We use Ax (k) to represent finite-k estimates. The ac-
tive information storage is represented in Fig. [1(b)l Of
course, one could also define a collective active informa-
tion storage Ax = limg oo Ixm,x-

A. Local active information storage

Following our local approach in Eq. @, the local ac-
tive information storage ax(n+ 1) is then a measure
of the amount of information storage in use by the pro-
cess at a particular time-step n+1. It is the local mutual
information (or pointwise mutual information) between
the semi-infinite past of the process and its next state:

Ax = (ax(n+1)),, (26)
ax(n+1) :kllngoax(n—kl,k), (27)
AX(k) = <G'X(n+ 17k)>n7 (28)

p(x%k), ZTrt1)

ax(n+1,k) = lim log , (29)
=2 () )p(n )
= lim i(z®;z,41). (30)

k—o0

As for the excess entropy, note that we have retained
notation for finite-k estimates here.

Again, we generalise the measure for agent X; in a
lattice system as:

k
(@) win 1)

a(i,n+1) = lim logy —————, (31)
koo p(x§,2 )P(Tins1)
= lim a(i,n+ 1,k). (32)
k—o0

We note that the local active information storage is de-
fined for every spatiotemporal point (i,n) in the lattice
system. We have A(i, k) = (a(i,n,k)),. For systems of
homogeneous agents where the probability distribution
functions are estimated over all agents, it is appropriate
to average over all agents also, giving:

A(k) = {a(i,n, k)); - (33)

The average active information storage will always be
positive (as for the excess entropy), but is limited by the
amount of information that can be used in the next state.
This is, it is bounded above by the average information
capacity of a single state (e.g. log, b bits where the agent
only takes b discrete states). The local active information
storage is not bound in this manner however, with larger
values indicating that the particular past of an agent pro-
vides strong positive information about its next state.

Furthermore, the local active information storage can
be negative, where the past history of the agent is actually
misinformative about its next state. Similar to the lo-
cal excess entropy, an observer is misinformed where the
probability of observing the given next state in the con-
text of the past history, p(@,11 | xslk)), is lower than the
probability p(x,+1) of observing that next state without
considering the past.

B. Relation to entropy rate and excess entropy

The average information required to predict the next
state X’ of an element is simply the single cell entropy
Hx,. We use the mutual information expansion of Eq.
to express the entropy in terms of the active information
storage and entropy rate estimates!0:

Hx/ = IX/;X(k) + HX'lX(k)a (34)

Logically, we can restate this as: the information to com-
pute or predict a given state is the amount predictable

10 We emphasise that these equations are correct not only in the
limit & — oo (i.e. for Eq. ) but for estimates with any value of
k > 1 (i.e. for Eq. ) We note also that Eq. demonstrates
that Ax converges to a limiting value when such limits exist for
H,x (e.g. for stationary processes [7]).



from its past (the active memory) plus the remaining
uncertainty after examining this memory.

This equation makes explicit our interpretation of in-
formation storage in distributed computation. It is the
information in the past that is observed to contribute to
the computation of the next state. Whether this informa-
tion is actually causal for that next state, either directly
or indirectly through neighbouring agents, is irrelevant
for this perspective.!!

This relationship between the entropy, active informa-
tion storage and entropy rate can be expressed in local
notation also:

hx(n+1):aX(n+1,k)+hHX(n+1,k), (37)
h(i,n+1) =a(i,n+1,k) + hu(i,n+1,k).  (38)

Appendix |A| describes the manner in which Eq. can
be used to show that the local active information storage
converges to a limiting value with k¥ — co when the local
entropy rate exhibits such convergence (which can only
be demonstrated under more strict conditions than for
convergence of the average entropy rate).

It is also possible to express the excess entropy in terms
of finite-k estimates of the active information storage. We
rearrange Eq. to get H,x(k) = Hx — Ax(k), and
then substitute this into Eq. (11, getting:

o}

Ex =Y [Ax — Ax (k). (39)

k=0

This expression shows that the excess entropy is the sum
of underestimates of the active information storage at
each finite history length & > 0 (with Ax(0) = 0).

This relationship is displayed graphically in Fig. [2] in
a similar fashion to the plot for the excess entropy in
terms of entropy rate estimates in Fig. 3 of [§].1? Note
that A(k) is non-decreasing with k; this is because in-
creasing the time examined in history widens the scope
of temporal correlations that the measure can capture.

VI. LOCAL INFORMATION STORAGE IN
CELLULAR AUTOMATA

In this section, we evaluate the local measures within
sample runs for the CA rules described in Section [[] To
do so, we estimate the required probability distribution
functions from CA runs of 10 000 cells, initialised from
random states, with 600 time steps retained (after the

11 The distinction between causal effect and the perspective of com-
putation is explored in [29].

12 Note that our sum and the plot start from k = 0, unlike the
expressions and plots in [§] which start from L = 1. The differ-
ence is that we have adopted k = L — 1 to keep a focus on the
number of steps k in the past history, which is important for our
computational view.
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FIG. 2: Active information storage convergence: a plot of

estimates Ax (k) versus history length k as they converge to
the limiting value Ax. The shaded area is the excess entropy
E.

first 30 time steps were eliminated to allow the CA to
settle). Periodic boundary conditions were used. Obser-
vations taken at every spatiotemporal point in the CA
were used in estimating the required probability distri-
bution functions, since the cells in the CA are homoge-
neous agents. All conclusions were confirmed by multiple
runs from different initial states, and all CA plots were
generated using modifications to [50].
In the following we discuss the key results here:

e that one should use as large a history length & as
possible to adequately measure information storage

(Sections and ;

e the dominant storage entities in CAs are blinkers
and domains (Section [VIB]);

e negative information storage at particles represents
the misinformation conveyed by the storage there

(Section [VIC));
e local entropy rate highlights the location of moving
particles (Section [VIGJ); and

e observations of other minor information storage

phenomena (Sections [VID| [VIE| and [VIF).

A. Appropriate history lengths

As previously stated, these measures are only com-
pletely correct in the limit & — oo, however this limit
is not computationally achievable. A logical question is
what history length k is reasonable to use, noting that
setting k = 1 is something of a default approach (e.g. for
the excess entropy in [I]).

Fig. [3] presents the average active information storage
A(k) in several ECA rules as a function of history length
k. In particular, we observe that using too small a value
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FIG. 3: Active information storage A(k) versus history length
k for several ECA rules.

for k (e.g. k < 5 for rule 110) can lead one to substan-
tially underestimate the information storage. Even in a
system as apparently simple as a CA, the default k = 1 is
clearly inadequate. Obviously in measuring information
storage one wants to capture all of the temporal correla-
tions and so use k — oo. However, the selection of k is
limited not only by the amount of history available to ex-
amine, but also by the number of observations available
for probability distribution function estimation. If k is
made too large, the mutual information will be artificially
inflated due to under-sampling.

One simple recommended heuristic is to select k to
have at least three times as many samples as possible

state configurations (mnH,x%k)) [35], which would sug-
gest keeping k < 19 here. More formally however, we se-
lect k to have at least M samples on average for each ob-
servation in the typical set of state configurations [7, [38].
The typical set refers to the set of state configurations
where the “sample entropy is close to the true entropy”
of that joint state [7], and can be thought of as the set of
state configurations likely to be encountered frequently
enough to contribute to that entropy. For k length blocks
of binary variables, the size of the typical set can be ap-
proximated as 2"+*. For our purposes with A(k), we
are considering k length blocks plus the next state, so
calculate the typical set for our state configurations as
2hu(k+1) - With h,, = 0.18 estimated using k = 16 for
rule 110 [33], we find the size of the typical set grows
much more slowly with k£ than the set of possible state
configurations. This means that fulfilling a desire for
M > 10 for reasonable accuracy is easily fulfilled for rule
110 and many other rules using £ < 18. Indeed, it is only
for rules with h, — 1 (e.g. rule 30, see [33]) that M even
approaches 10 with k& < 18; for most rules & < 18 results
in a much larger average number of samples M >> 10
and therefore larger accuracy. We elect to continue our
CA investigations with the more strict condition k < 16
however, for comparison to our related work in [31H33].

Fig. 3] suggests for example that the majority of the
information storage for rule 110 is captured with k£ > 7
or so, however this examination of the average values
of A(k) does not show explicitly why this is the case.
Furthermore, these average values tell us nothing about
whether blinkers are dominant information storage struc-
tures, and if so whether the information storage in them
has been captured at these history lengths. To under-
stand these issues, we begin to examine the information
storage on a local scale in the next section.

B. Periodic blinker and domain processes as
dominant storage

We begin by examining the local profiles for rules 54
and 110, which are known to contain regular gliders
against periodic background domains. For the CA evo-
lutions in Fig. and Fig. the local profiles of
e(i,n,k = 8) are displayed in Fig. [A(b)| and Fig. [5(b)]
and the local profiles of a(i,n,k = 16) in Fig. |4(c)| and
Fig.

It is quite clear that positive information storage is
concentrated in the vertical gliders or blinkers, and the
domain regions. As expected in our hypothesis in Sec-
tion [} these results provide quantitative evidence that
the blinkers are the dominant information storage
entities. This is because the cell states in the blink-
ers are strongly predictable from their past history, since
they are temporally periodic. It is only the local profiles
that demonstrate the strong information storage at these
entities though. That the domain regions for these
rules also contain significant information storage
should not be surprising, since these too are periodic and
so their past does indeed store information about their
future. In fact, the local values for each measure form
spatially and temporally periodic patterns in these re-
gions, due to the underlying periodicities exhibited there.

As expected, these two measures provide useful filters
for information storage structure here. Yet the local
active information storage and local excess en-
tropy yield subtly different results here. While
a(i,n,k = 16) indicates a similar amount of stored in-
formation in use to compute each space-time point in
both the domain and blinker areas, e(i,n,k = 8) re-
veals a larger total amount of information is stored in
the blinkers. For the blinkers known as a and § in rule
54 [21] this is because the temporal sequences of the cen-
tre columns of the blinkers (0-0-0-1, with e(é,n, k = 8) in
the range 5.01 to 5.32 bits) are more complex than those
in the domain (0-0-1-1 and 0-1, with e(,n,k = 8) in the
range 1.94 to 3.22 bits), even where they are of the same
period. In principle, we could define a threshold ip to
differentiate between the blinkers and domain using the
local excess entropy. Note that we have the total stored
information e(i,n,k = 8) > 1 bit in these regions due to
the distributed information storage supported by bidi-
rectional communication (as discussed in Section .




(a)Raw CA

(c)a(i,n, k = 16) (d)hy(i,n, k = 16)

FIG. 4: (colour online) Local information storage in rule
54 (40 time steps displayed for 40 cells, time increases down
the page for all CA plots). Profiles are discretised into
16 levels, with blue for positive values and red for
negative. |(b)| Local excess entropy, max. 11.79 bits, min.
-12.35 bits; |(c)| Local active information storage, max. 1.07
bits, min. -12.27 bits; Local temporal entropy rate, max.
13.20 bits, min. 0.00 bits. Note that we mark the positions

(in[(B)] and of the blinker types a and § and glider types
vt and 7~ (named following [21]).

This mechanism supports these periodic sequences be-
ing longer than two time steps (the maximum period a
binary cell could sustain in isolation).

Importantly, we also confirm the information storage
capability of the blinkers and domains in the human un-
derstandable computation of the ¢,,, density classifica-
tion rule [40, 41] (not shown, see additional results in

[34))

To further investigate the appropriate history length
k for use with the information storage measures, we ex-
amine the profiles of a(i,n,k = 1) and a(i,n,k = 7) for
rule 110 in Fig. and Fig. As per the low aver-

age value for A(k = 1) for rule 110 in Fig. |3| Fig.
demonstrates that the use of £k = 1 is inadequate here

since it does not capture the strong information storage
in the gliders and domain regions that we see for the
profiles with k£ = 16. On the other hand, Fig. shows
that the use of k = 7 does capture most of this strong
information storage (compare to k = 16 in Fig. [5(c))), in
alignment with the average value for A(k = 7) for rule
110 approaching the limiting value in Fig. |3| This is be-

(c)a(i,n, k = 16)

s
-.-'

(e)a(i,n,k=1) (-f)a(i,n, k=T)

FIG. 5: (colour online) Local information dynamics in rule
110 (67 time steps displayed for 67 cells). |(b)| Local excess
entropy, max. 10.01 bits, min. -10.35 bits; [(c)| Local active
information storage, max. 1.22 bits, min. -9.21 bits; @Local
temporal entropy rate, max. 10.43 bits, min. 0.00 bits. Local
active information storage with short history lengths: @With
k =1, max. 0.24 bits, min. -0.21 bits; |(f)| with £ = 7, max.
1.22 bits, min. -5.04 bits.

cause the blinker and domain regions for rule 110 are both
of period 7. To understand why setting k at this period
is effective, consider first an infinite temporally periodic
process with period p. The next state of that process is
completely predictable from its (infinite) past. In fact,
the number of past states an observer must examine to
correctly determine the next state is limited by p (as per
the synchronisation time in [I0]). Using & > p — 1 does
not add any extra information about the next state than
is already contained in the p—1 previous states. However,
using k < p — 1 may not provide sufficient information



for the prediction. Using k = p—1 is a sufficient (Marko-
vian) condition for infinitely periodic processes. Where
a process contains punctuated periodic sequences
(e.g. the periodic blinkers and domains in a single cell’s
time series here), setting k = p — 1 will capture the
information storage related to the period of these
sequences and is a useful minimum value. How-
ever, it will still ignore important longer-range correla-
tions (e.g. encountering one type of glider in the near
past may be strongly predictive of encountering a differ-
ent type of glider in the near future). There is no general
limit on the range of such self-influence, so in theory the
limit k& — oo should be taken in measuring these quanti-
ties. This is why k = 7 captures much, but not all of the
active information storage for rule 110.

C. Negative informative storage as misinformation
at particles

Negative values of a(i,n,k = 16) for rules 54 and 110
are also displayed in Fig. and Fig. Interestingly,
negative local components of active information
storage are concentrated in the travelling glider
areas (e.g. 7" and v~ for rule 54 |21]), providing a
good spatiotemporal filter of the glider structure.
This is because when a travelling glider is encoun-
tered at a given cell, the past history of that cell
(being part of the background domain) is misinforma-
tive about the next state, since the domain sequence
was more likely to continue than be interrupted.

For example, see the marked positions of the v gliders
in Fig. [0l These positions are part of a domain wall
(or particle) by definition, since the temporal pattern
of the background domain breaks down at these points.
At the points in the glider marked x, we have p(x,1 |

xslk:w)) = 0.25 and p(z,,4+1) = 0.52: since the next state
occurs relatively infrequently after the given history, that
history provides a misinformative a(n,k = 16) = —1.09
bits about the next state. This is juxtaposed with the
points four time steps before those marked x, which

(k=

have the same history xj 19 but remain part of the

domain. There we have p(z,4+1 | xSf:m)) = 0.75 and
p(xny1) = 0.48 giving a(n, k = 16) = 0.66 bits, quantify-
ing the positive information storage there.

Note that the points with misinformative storage are
not necessarily those selected by other filtering tech-
niques as part of the gliders. For example, the finite
state transducers technique from computational mechan-
ics (using left to right spatial scanning by convention) [19)]
would identify points 3 cells to the right of those marked
x as part of the v glider. While that technique has the
perspective of spatial pattern recognition, we take the
temporal perspective of unfolding computation.

The local excess entropy also produced some nega-
tive values around travelling gliders (see Fig. and
Fig. , though these were far less localised on the
gliders themselves and less consistent in occurrence than
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FIG. 6: Close up of raw states of rule 54. X marks some
positions in a v glider. As discussed in Section these
points are part of the glider because the temporal domain
pattern 0-0-1-1 breaks down at these points. Section [VIC|ex-
plains that we have negative local information storage at these
points, because the past history of the cell misinforms an ob-
server regarding an expected continuation of the background
domain.

for the local active information storage. This is because
the local excess entropy, as measure of total information
storage used in the future, is more loosely tied to the dy-
namics at the given spatiotemporal point. The effect of a
glider encounter on e(i, n, k) is smeared out in time, and
in fact the dynamics may store more positive information
in total than the misinformation encountered at the spe-
cific location of the glider. For example, parallel glider
pairs in Fig. have positive total information stor-
age, since a glider encounter becomes much more likely
in the wake of a previous glider. We also note negative
values of e(i,n, k) near the start and end of blinkers (see
Fig. [A(b)), since the encountering of new periodic be-
haviour here can be misinformative until enough of that
behaviour is established in the past of the time series to
facilitate prediction of the future.

D. Particles create new information storage

There is also strong positive information storage in the
“wake” of the more complex gliders in rule 110 (e.g. see
the gliders at the left of Fig. and Fig. [5(c)). This
indicates that while the leading edge of the gliders cause
the cell states to become unpredictable from their past,
the subsequent activity (before a domain pattern is es-
tablished) is predictable given the glider encounter. The
leading edge of the gliders can thus be seen to
store information in the cell about its new be-
haviour. The presence of this information storage is
shown by both measures, although the relative strength
of the total information storage is again revealed only by
the local excess entropy. We will observe a similar cre-
ation of new information storage by domain walls in rule
18 in Section [VIT]



E. Structured information storage in domain of
rule 18

There is also interesting information storage structure
in ECA rule 18, which contains domain walls against a
seemingly irregular background domain. The local pro-
files for e(i,n,k = 8) and a(i,n,k = 16) are plotted in
Fig. and Fig. for the raw states of rule 18 dis-
played in Fig. [7(a)l In contrast to rules 54 and 110,
the background domain for rule 18 contains points with
both positive and negative local active information stor-
age. Considering these components together, we observe
a pattern to the background domain of spatial and tem-
poral period 2 corresponding to the period-2 e-machine
generated to recognise the background domain for ECA
rule 18 by Hanson and Crutchfield [I8]. Every second
site in the domain is a “0”, and contains a small positive
a(i,n,k = 16) (=~ 0.43 to 0.47 bits); information storage
of this primary temporal phase of the period is sufficient
to predict the next state here. The alternate site is ei-
ther a “0” or a “1”, and contains either a small negative
a(i,n,k = 16) at the “0” sites (=~ -0.45 to -0.61 bits) or
a larger positive a(i,n, k = 16) at the “1” sites (=~ 0.98
to 1.09 bits). Information storage of the cell being in the
alternate temporal phase is strongly in use or active in
computing the “1” sites, since the “1” sites only occur
in the alternate phase. However, the information storage
indicating the alternate temporal phase is misleading in
computing the “0” sites since they occur more frequently
with the primary phase. Indeed, encountering a “0” at
the alternate sites creates ambiguity in the future (since
it makes determination of the phase more difficult) so in
this sense it can be seen as detracting from the overall
storage. The background domain should contain a con-
sistent level of excess entropy at 1 bit to store the tempo-
ral phase information, and this occurs for most points.?
Again, this resembles a smearing out of the local period-
icity of the storage in use, and highlights the subtle
differences between the excess entropy and active
information storage.

F. Misinformation and new storage creation by
domain walls

The domain walls in rule 18 are points where the spa-
tiotemporal domain pattern is violated. Strong nega-
tive components of the local active information
storage reveal the temporal violations, which oc-
cur when the domain wall moves or travels into a
new cell and the past of that cell cannot then predict the
next state successfully. This misinformation is analogous
to our observations for regular gliders in rules 54 and

13 The exceptions are where long temporal chains of 0’s occur, dis-
turbing the memory of the phase due to finite-k effects.
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(a)Raw CA (b)e(i,n, k = 8)

(c)a(i,n, k = 16) (d)hu(i,n, k = 16)

FIG. 7: Local information storage in rule 18 (67 time steps

displayed for 67 cells). [(b)| Local excess entropy, max. 4.62
bits, min. -8.65 bits; Local active information storage,

max. 1.98 bits, min. -9.92 bits; @ Local temporal entropy
rate, max. 11.90 bits, min. 0.00 bits.

110 in Section Importantly, these negative values
of a(i,n, k = 16) (which are less than -2.5 bits) are much
stronger than those in the background domain, and are
strongly localised on the domain walls. Again, the nega-
tive components of a(i,n, k = 16) appear to be a useful
filter for moving coherent spatiotemporal structure.

The local excess entropy profile on the other hand con-
tains both positive and negative values (Fig. for the
domain walls. As per the results for gliders, these neg-
ative values are less specifically localised on the domain
walls than observed for a(i,n, k). The strong positive
values of e(i,n, k = 8) are observed to occur where the
domain wall makes several changes of direction during
the k steps but is somewhat motionless on average. This
is because a domain wall encounter is much more likely in
the wake of previous domain wall movement than else-
where in the CA. This has analogies to both the new
information storage creation by gliders in Section
and the storage in stationary blinkers in Section

G. Local temporal entropy rate highlights moving
particles

The local temporal entropy rate profiles h,(i,n, k) are

displayed in Fig. for rule 54, Fig. for rule 110



and Fig. for rule 18. These are the first known tem-
poral entropy rate profiles published for CAs, though spa-
tial entropy rate profiles can be seen in [20] (referred to as
local information there). Clearly these local temporal
entropy rate profiles are useful spatiotemporal fil-
ters for moving emergent structure, highlighting
all of the moving particles in each system.

In fact, these profiles are quite similar to those of
the negative values of local active information storage.'*
This is not surprising since h,(i,n,k) and a(i,n, k) are
seen to be complementary in Eq. (37). Where a(i,n, k)
is negative, h, (4, n, k) must be strongly positive since the
local single cell entropy h(i,n) averages close to 1 bit for
these examples. That is, where the information storage
a(i,n, k) is misinformative about the next state of a cell,
there is a high uncertainty h,(i,n,k) in this next state
given its past history.

Similarly, h,(i,n,k) only highlights travelling parti-
cles: as we have already seen, stationary coherent ele-
ments such as blinkers are information storage entities
for which there is little to no uncertainty in the next
state given the past.

In deterministic systems such as CAs, any extra in-
formation h,(i,n,k) about the next state must come
from the neighbouring cells. The temporal entropy
rate therefore represents a collective information
transfer from the neighbours in deterministic sys-
tems (see further discussion of this point taken up in
[32]). Importantly though, it cannot identify individual
sources of information transfer: we directly investigate
information transfer based filtering (identifying specific
sources of information) in [31].

H. Absence of coherent information storage
structure

Finally, we note that profiles of e(i,n,k = 8) and
a(i,n,k = 16) for ECA rule 22 and chaotic rule 30,
not shown here, are included in additional results in
[33, B4]. While storage is certainly observed to occur
for these rules, these plots provide further evidence
that there is no coherent structure to the infor-
mation storage for rule 22 (or indeed 30). This is
particularly important for rule 22, since we recall from
Section [[VB]| that it was suggested to have infinite col-
lective excess entropy [15, [16], however it had no known
coherent structural elements [45]. Thus this is another
clear example of the utility of examining local informa-
tion dynamics over ensemble values.

14 Recall though from Section that h,(i,n, k) itself is never
negative.
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VII. CONCLUSION

In this paper we have introduced and contrasted the
local excess entropy and local active information storage
in Sections [[V] and [V] We have demonstrated that they
provide complementary insights into information stor-
age dynamics, because the excess entropy measures total
storage used in the future while the active information
storage measures storage in use in computing the next
state. As such, their results are often similar in general,
but do reveal subtly different aspects of the dynamics.

Importantly, in Section [VI] we showed that both are
useful filters for information storage structure, and pro-
vide the first quantitative evidence that blinkers and do-
mains are dominant information storage entities in cellu-
lar automata. In particular, the excess entropy revealed
that blinkers in the CAs investigated here stored more
information in total than domains. (See a summary of
the application to CAs, and how our local information-
theoretic measures could be used to classify emergent
structure, in Table . While both measures provide use-
ful insights, the local active information storage is the
most useful in a real-time sense, since calculation of the
local excess entropy requires knowledge of the dynam-
ics an arbitrary distance into the future.!> Also, it also
provides the most specifically localised insights, including
highlighting moving elements of coherent spatiotemporal
structure.

Furthermore as hinted by its relationship with the tem-
poral entropy rate, the focus of the active information
storage on computation of the next state of a process
is particularly important in understanding how stored
information interacts with information transfer in infor-
mation processing. As such, we demonstrated that its
complementary quantity, the entropy rate, reveals glid-
ers as coherent information transfer structures here in
CAs and is a useful filter for such moving structure. This
being said, none of these measures are capable of iden-
tifying the source of information transfer in moving co-
herent structures, nor where information is modified in
distributed computation; investigations of these opera-
tions on information are considered in our related work
[B1H33]. Importantly, this paper along with our related
work [31H33] can thus be seen to form a complete frame-
work for analysis of the local information dynamics of
distributed computation in complex systems: i.e. the
space-time dynamics of how information is stored, trans-
ferred and modified in distributed computation. This
framework thus provides complete evidence for the com-

15 As described in Section while there are alternative formu-
lations of the local excess entropy which can be computed from
past observations alone, they cannot be interpreted as the total
information storage at the given time point. A similar concept
would be the partial localisation (see [29]) I(xﬁl’“; X(’l“+))7 which
quantifies how much information from the past is likely to be
used in the future.
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‘ ‘ ex(n)>i3

‘ ex(n) <ip ‘

ax(n) >0

and [VIT)

blinkers, stationary domain walls (Section ‘ periodic domain (Section [VIB) ‘

lax(n) < 0|

gliders, moving domain walls (Section and [VIF) ‘

TABLE I: Classification of emergent structures in cellular automata via their specific information storage properties. As
discussed in Sectionlm, ip is a hypothetical threshold which could be used to differentiate between the blinkers and background

domain using the local excess entropy.

putational roles of emergent structure in CAs: blinkers
and domains as information storage (in this paper), par-
ticles as information transfer [31], and particle collisions
as information modification [32].

We note finally that our local measures used here are
able to properly reveal and explain all of the information
storage dynamics (e.g. regarding the dominant struc-
tures) in ECA rule 54, unlike the alternative (spatial) re-
dundancy measure suggested for storage in [12] (which for
example cannot distinguish “storage” dynamics between
gliders and the background domain). This is because the
measures used here specifically capture information stor-
age rather than spatially redundant information, which
does not necessarily directly relate to all types of informa-
tion storage dynamics. Similarly, the alternative measure
for transfer used in [I2] does not capture the dominant
transfer components in gliders in ECA rule 54, because it
measures only unique information from transfer sources
(whereas gliders are only distinguished by a synergistic
interaction of the source with destination history as his-
tory length k is made large enough [3I]). Furthermore,
short sliding window averaging was used for localisation
in [12], which both blurs out local dynamics and also sig-
nificantly undersamples the relevant probability distri-
bution functions. The partial information decomposition
approach certainly reveals very interesting properties of
the dynamics, however properly capturing information
storage and transfer dynamics requires specific measures
of these operations, as provided by our framework.

In future work, we plan to compare our findings to lo-
cal profiles of the statistical complexity which, while not
measuring the information storage dynamically in use in
the future, does measure the total information storage
that is relevant to the future of the process [9]. We are
also examining the relationship between network struc-
ture and the dynamic information storage capabilities of
nodes on that network, e.g. finding that storage capabil-
ity is directly related to locally clustered structure [28],
specifically feedback and feedforward loop motifs [27].
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APPENDIX A: CONVERGENCE OF LOCAL
QUANTITIES

Here we consider conditions for convergence of the local
entropy rate h,x (n, k), and consequently the local active
information storage ax(n, k), as k — oo.

First, we note that when the average entropy rate con-
verges (which occurs for example for stationary processes
[7), the difference between the estimates H,x(k + 1) —
H, x (k) approaches 0 as k — oo. This difference can
be expressed as an average conditional mutual informa-

tion (MI) (i(xpt1;Tn—k | z;’f)» between the next state
ZTpy1 and the state k 4+ 1 time steps beforehand, x,,_p,

conditioned on the previous k states, x%k). We note that
the difference between the local entropy rate estimates at
each time step n, hyx(n,k + 1) — hyx(n, k), is equal to
the local values of this conditional MI at that time step,
ie. i(Tpt1; ok | x,(lk))

Now, under convergence of the average entropy rate,
this average conditional MI (i(2p41;Tn—k | a:gf))) must
converge to zero as k — oo. Suppose this average con-
ditional MI was equal to zero. Since we know that the
Kullback-Leibler divergence between two conditional dis-
tributions p(a | b) and g(a | b) is equal to zero if and only
if p(a | b) = q(a | b) for all @ and b with p(b) > 0 [7, p.27],
then under such equality of the average, each local term
(Tpa1; Tk | x%k)) must also be equal to zero. Now, be-
ing equal to zero is a stronger condition than convergence
to zero; the equality (i(Zn41;Tn—k | x%k)» = 0 holds for
processes of finite Markovian order k, but cannot be said
to do so in general.'®

16 In general, one can construct local conditional MI values of ar-
bitrarily large value as the average conditional MI converges to
zero. Without the relevant Markovian condition, this is possi-
ble for i(zn41;%n_k | x;’“) We congecture however that the
variance of local conditional MI terms converge to zero as the
average does so. Were this to be the case (which we will attempt
to prove in future work), then one could show that the prob-
ability of encountering any non-zero local conditional MI value
converges to zero when the average does so.



As such, we conclude that for processes with conver-
gent average entropy rates, and of a finite Markovian
order k, the incremental differences between the local
entropy rate estimates vanish as k — oo, i.e. the local
entropy rate converges. We will investigate whether less
strict conditions can be established in future work. Until
this can be done, one must be careful in using the local
quantities since they may not converge as k — oo.

We note that the local active information storage
ax (n, k) converges under the same conditions as above,
since it is a simple function of the local entropy rate and
the local entropy (see Eq. )

Finally, a similar argument can be used for the con-
vergence of the (predictive information form of the) local
excess entropy in Eq. . We note that the incremental
difference between the averaged estimates Ex (k + 1) —
Ex (k) is the sum of two average conditional MI terms
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(which account for the extra future state z,,+,4+1 and past

state z,_g): (i(xn_,_k_,_l;x%k) | z%kﬂ)) + (i(Tp—k; z%’ﬁﬁ) |

x;k))). As above, when the average excess entropy con-
verges to a limiting value (i.e. the incremental differ-
ence vanishes), then both of these average conditional
MI terms must converge to zero (since their sum must
be zero, and neither can be negative). As above, under
the stronger condition of equality to zero (met by pro-
cesses of finite Markovian order), all of the local terms
of each conditional MI are equal to zero, meaning the
incremental differences ex(n,k + 1) — ex(n, k) between
the local excess entropy estimates also converges to zero.
As such, our local excess entropy terms converge to a
limiting value for processes of a finite Markovian order
(whose averages do so).

[1] Ay, N., Bertschinger, N., Der, R., Giittler, F., and Ol-
brich, E. (2008) Predictive information and explorative
behavior of autonomous robots. Furopean Physical Jour-
nal B, 63, 329-339.

[2] Ay, N., Olbrich, E., Bertschinger, N., and Jost, J.
(2011) A geometric approach to complexity. Chaos, 21,
037103+.

[3] Bialek, W., Nemenman, I., and Tishby, N. (2001) Com-
plexity through nonextensivity. Physica A, 302, 89-99.

[4] Boedecker, J., Obst, O., Mayer, N. M., and Asada, M.
(2009) Initialization and self-organized optimization of
recurrent neural network connectivity. HF'SP Journal, 3,
340-349.

[5] Ceguerra, R. V., Lizier, J. T., and Zomaya, A. Y. (2011)
Information storage and transfer in the synchroniza-
tion process in locally-connected networks. Artificial Life
(ALIFE), 2011 IEEE Symposium on, pp. 54-61, IEEE.

[6] Couzin, 1., James, R., Croft, D., and Krause, J. (2006)
Social organization and information transfer in schooling
fishes. C., B., Laland, K., and Krause, J. (eds.), Fish
Cognition and Behavior, pp. 166—185, Fish and Aquatic
Resources, Blackwell Publishing.

[7] Cover, T. M. and Thomas, J. A. (1991) Elements of In-
formation Theory. John Wiley & Sons.

[8] Crutchfield, J. P. and Feldman, D. P. (2003) Regularities
unseen, randomness observed: Levels of entropy conver-
gence. Chaos, 13, 25-54.

[9] Crutchfield, J. P. and Young, K. (1989) Inferring statis-
tical complexity. Physical Review Letters, 63, 105.

[10] Feldman, D. P. and Crutchfield, J. P. (2004) Synchro-
nizing to periodicity: The transient information and
synchronization time of periodic sequences. Advances in
Complex Systems, 7, 329-355.

[11] Feldman, D. P., McTague, C. S., and Crutchfield,
J. P. (2008) The organization of intrinsic computation:
Complexity-entropy diagrams and the diversity of natu-
ral information processing. Chaos, 18, 043106.

[12] Flecker, B., Alford, W., Beggs, J. M., Williams, P. L.,
and Beer, R. D. (2011) Partial information decomposi-
tion as a spatiotemporal filter. Chaos, 21, 037104+.

[13] Goh, K. I. and Barabdsi, A. L. (2008) Burstiness and

memory in complex systems. Furophysics Letters, 81,
48002.

[14] Grassberger, P. (1983) New mechanism for deterministic
diffusion. Physical Review A, 28, 3666.

[15] Grassberger, P. (1986) Long-range effects in an elemen-
tary cellular automaton. Journal of Statistical Physics,
45, 27-39.

[16] Grassberger, P. (1986) Toward a quantitative theory of
self-generated complexity. International Journal of The-
oretical Physics, 25, 907-938.

[17] Grassberger, P. (1989) Information content and pre-
dictability of lumped and distributed dynamical systems.
Physica Scripta, 40, 346.

[18] Hanson, J. E. and Crutchfield, J. P. (1992) The attractor-
basin portait of a cellular automaton. Journal of Statis-
tical Physics, 66, 1415-1462.

[19] Hanson, J. E. and Crutchfield, J. P. (1997) Compu-
tational mechanics of cellular automata: An example.
Physica D, 103, 169-189.

[20] Helvik, T., Lindgren, K., and Nordahl, M. G. (2004)
Local information in one-dimensional cellular automata.
Sloot, P. M., Chopard, B., and Hoekstra, A. G. (eds.),
Proceedings of the International Conference on Cellu-
lar Automata for Research and Industry, Amsterdam,
Berlin/Heidelberg, vol. 3305 of Lecture Notes in Com-
puter Science, pp. 121-130, Springer.

[21] Hordijk, W., Shalizi, C. R., and Crutchfield, J. P. (2001)
Upper bound on the products of particle interactions in
cellular automata. Physica D, 154, 240-258.

[22] Kitzbichler, M. G., Smith, M. L., Christensen, S. R.,
and Bullmore, E. (2009) Broadband criticality of human
brain network synchronization. PLoS Computational Bi-
ology, 5, €1000314.

[23] Klyubin, A. S., Polani, D., and Nehaniv, C. L. (2004)
Tracking information flow through the environment:
Simple cases of stigmergy. Pollack, J., Bedau, M., Hus-
bands, P., Ikegami, T., and Watson, R. A. (eds.), Pro-
ceedings of the Ninth International Conference on the
Simulation and Synthesis of Living Systems (ALife 1X),
Boston, USA, Cambridge, MA, USA, pp. 563-568, MIT
Press.



[24] Korogec, P., Silc, J., and Filipi¢, B. (2012) The differen-
tial ant-stigmergy algorithm. Information Sciences, 192,
82-97.

[25] Langton, C. G. (1990) Computation at the edge of chaos:
phase transitions and emergent computation. Physica D,
42, 12-37.

[26] Lindgren, K. and Nordahl, M. G. (1988) Complexity
measures and cellular automata. Compler Systems, 2,
409-440.

[27] Lizier, J. T., Atay, F. M., and Jost, J. (2011) Information
storage, loop motifs and clustered structure in complex
networks, under submission.

[28] Lizier, J. T., Pritam, S., and Prokopenko, M. (2011)
Information dynamics in small-world Boolean networks.
Artificial Life, 17, 293-314.

[29] Lizier, J. T. and Prokopenko, M. (2010) Differentiating
information transfer and causal effect. Furopean Physical
Journal B, 73, 605-615.

[30] Lizier, J. T., Prokopenko, M., and Zomaya, A. Y. (2007)
Detecting non-trivial computation in complex dynamics.
Almeida e Costa, F., Rocha, L. M., Costa, E., Harvey,
I., and Coutinho, A. (eds.), Proceedings of the 9th Euro-
pean Conference on Artificial Life (ECAL 2007), Lisbon,
Portugal, Berlin / Heidelberg, vol. 4648 of Lecture Notes
in Artificial Intelligence, pp. 895-904, Springer.

[31] Lizier, J. T., Prokopenko, M., and Zomaya, A. Y. (2008)
Local information transfer as a spatiotemporal filter for
complex systems. Physical Review E, 77, 026110.

[32] Lizier, J. T., Prokopenko, M., and Zomaya, A. Y. (2010)
Information modification and particle collisions in dis-
tributed computation. Chaos, 20, 037109.

[33] Lizier, J. T., Prokopenko, M., and Zomaya, A. Y. (2012)
Coherent information structure in complex computation.
Theory in Biosciences, in press.

[34] Lizier, J. T. (2010) The local information dynamics of
distributed computation in complez systems. Ph.D. thesis,
The University of Sydney.

[35] Lungarella, M., Pegors, T., Bulwinkle, D., and Sporns,
O. (2005) Methods for quantifying the informational
structure of sensory and motor data. Neuroinformatics,
3, 243-262.

[36] MacKay, D. J. (2003) Information Theory, Inference, and
Learning Algorithms. Cambridge University Press.

[37] Maji, P. and Pal Chaudhuri, P. (2008) Non-uniform cel-
lular automata based associative memory: Evolutionary
design and basins of attraction. Information Sciences,
178, 2315-2336.

[38] Marton, K. and Shields, P. C. (1994) Entropy and the
consistent estimation of joint distributions. The Annals
of Probability, 22, 960-977.

16

[39] Mitchell, M. (1998) Computation in cellular automata:
A selected review. Gramss, T., Bornholdt, S., Gross,
M., Mitchell, M., and Pellizzari, T. (eds.), Non-Standard
Computation, pp. 95-140, VCH Verlagsgesellschaft.

[40] Mitchell, M., Crutchfield, J. P., and Das, R. (1996)
Evolving cellular automata with genetic algorithms: A
review of recent work. Goodman, E. D., Punch, W.; and
Uskov, V. (eds.), Proceedings of the First International
Conference on Fvolutionary Computation and Its Appli-
cations, Moscow, Russia, Russian Academy of Sciences.

[41] Mitchell, M., Crutchfield, J. P., and Hraber, P. T. (1994)
Evolving cellular automata to perform computations:
Mechanisms and impediments. Physica D, 75, 361-391.

[42] Morgado, R., Ciedla, M., Longa, L., and Oliveira, F. A.
(2007) Synchronization in the presence of memory. Fu-
rophysics Letters, 79, 10002.

[43] Prokopenko, M., Gerasimov, V., and Tanev, I. (2006)
Evolving spatiotemporal coordination in a modular
robotic system. Nolfi, S., Baldassarre, G., Calabretta,
R., Hallam, J., Marocco, D., Meyer, J.-A., and Parisi,
D. (eds.), Proceedings of the Ninth International Confer-
ence on the Simulation of Adaptive Behavior (SAB’06),
Rome, vol. 4095 of Lecture Notes in Artificial Intelli-
gence, pp. 548-559, Springer Verlag.

[44] Shalizi, C. R. (2001) Causal Architecture, Complexzity and
Self-Organization in Time Series and Cellular Automata.
Ph.D. thesis, University of Wisconsin-Madison.

[45] Shalizi, C. R., Haslinger, R., Rouquier, J.-B., Klinkner,
K. L., and Moore, C. (2006) Automatic filters for the de-
tection of coherent structure in spatiotemporal systems.
Physical Review E, 73, 036104.

[46] Sporns, O. (2011) Networks of the brain. MIT Press.

[47] Tononi, G., Sporns, O., and Edelman, G. (1994) A mea-
sure for brain complexity: Relating functional segrega-
tion and integration in the nervous system. Proceedings
of the National Academy of Sciences, 91, 5033-5037.

[48] Williams, P. L. and Beer, R. D. (2010) Non-
negative decomposition of multivariate information.
arXiv:1004.2515.

[49] Williams, P. L. and Beer, R. D. (2011) Generalized mea-
sures of information transfer. arXiv:1102.1507.

[60] Wéjtowicz, M. (2002), Java cellebration v.1.50. Online
software.

[51] Wolfram, S. (2002) A New Kind of Science. Wolfram
Media.

[52] Wuensche, A. (1999) Classifying cellular automata auto-
matically: Finding gliders, filtering, and relating space-
time patterns, attractor basins, and the Z parameter.
Complexity, 4, 47-66.



