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Abstract. In this paper1, we introduce a method, Assortative Preferential At-
tachment, to grow a scale-free network with a given assortativeness value. Uti-
lizing this method, we investigate information-cloning — recovery of scale-free
networks in terms of their information transfer — and identify a number of recov-
ery features: a full-recovery threshold, a phase transition for both assortative and
disassortative networks, and a bell-shaped complexity curve for non-assortative
networks. These features are interpreted with respect to two opposing tendencies
dominating network recovery: an increasing amount of choice in adding assor-
tative/disassortative connections, and an increasing divergence between the joint
remaining-degree distributions of existing and required networks.

1 Introduction

Many biological networks, e.g. gene-regulatory networks, metabolic networks, and pro-
tein interaction networks are often characterized as complex scale-free networks. In this
paper, we consider a task ofinformation-cloningof a scale-free network, given its frag-
ment and some topological properties of the original network. The “cloning” is inter-
preted information-theoretically: the resulting network may disagree with the original
one in terms of specific node to node connections, but is required to have equivalent
information transfer. The information-cloning task is partly motivated by needs of net-
work manufacturing, where an “assembly-line” starts with a fragment and continues
with “manufacturing” the rest, subject to topological constraints. Another motivation is
regeneration of scale-free networks which are prone to percolation/diffusion of adverse
conditions, as well as removal of highly connected nodes. Both demands (topology-
oriented manufacturing and regeneration) are referred in this paper asnetwork recovery.

Recovery of networks can be attempted and evaluated in various ways. In this paper,
we aim at a general measure in terms of mutual information contained in the network,
or its information transfer. More precisely, we propose to judge success of the recovery
with respect to the amount of information transfer regained by a resulting network.

Various network growth models have been analyzed in literature [1–4]. One promi-
nent model is the preferential attachment model, which explains power law degree dis-
tributions observed in scale-free networks [4]. In this model, the probability of a new
node making a link to an existing node in the network is proportional to the degree of the
target node. Newman [2] pointed out that this model does not take into account the de-
gree of the source node in influencing the attachment probability, and suggested to con-
sider another tendency for preferential association, measured viaassortativeness. The
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networks where highly connected nodes are more likely to make links with other highly
connected links are said to mix assortatively, while the networks where the highly con-
nected nodes are more likely to make links with more isolated, less connected, nodes are
said to to mix disassortatively. In both cases, the likelihood of creating a link depends
on the degrees of both nodes. Both assortative and disassortative mixing is contrasted
with non-assortative mixing, where no preferential connection can be established.

The extent of assortativeness affects network’s resilience under node removal or
percolation/diffusion of adverse conditions [2]. Our objective is an investigation of how
successful is anetwork recoveryin terms of assortativeness and information transfer. We
note that this objective is different from investigation of networks’ robustness properties
such aserror tolerance, attack survivability, or network fragmentationthat have been
extensively studied [5–7]. For example, Moreno et al. [7] explored robustness of large
scale-free networks faced with node-breaking avalanches (cascading failures when a
failure of a node triggers subsequent failures of neighbours), and investigated how the
random removal of nodes in a fixed proportion affects the global connectivity and func-
tionality of scale-free networks. Stauffer and Sahimi studied scale-free networks with
annealed disorder [8], when the links between various nodes may temporarily be lost
and reestablished again later on, and observed a number of critical phenomena, e.g.
“the existence of a phase diagram that separates the region in which diffusion is possi-
ble from one in which diffusion is impossible”. This study did not investigate, however,
the role of assortativeness and information transfer in the diffusion process.

Naturally occurring networks display various extents of assortative mixing, and it
is often possible to measure or calculate the level of assortativeness in these networks
[1]. However, it is not straightforward to (re-)grow a network with a level of assortative
mixing specifieda priori. We address this problem and propose a method to grow or
recover a scale-free network with a given assortativeness. We also show that a network
with perfect assortativeness can be grown for any desired degree distribution, whereas
a network with perfect disassortativeness can be grown only if the corresponding ‘re-
maining degree distribution’ for the desired degree distribution is symmetric.

Utilizing this method, we investigate recovery of scale-free networks in terms of
their information transfer. Following Solé and Valverde [1], we define the information
transfer as mutual information contained in the network, or the amount of general corre-
lation between nodes. Importantly, the maximum attainable information transfer defines
the network’s capacity, in analogy with information-theoretic notion of channel capac-
ity — the maximum mutual information for the channel over all possible distributions
of a transmitted signal. In general, information transfer is a vital indicator of complex
non-linear behavior in self-organizing systems, and can be associated withpredictive
information, richness of structure (i.e.excess entropy), andphysical complexity[9].

2 Assortativeness and Information Transfer

We study assortativeness in scale-free networks described by power law degree dis-
tributions, formally specified asP (k) = Ak−γu(k/Np) whereu is a step function
specifying a cut off atk = Np.

The degree of a node is the number of other nodes to which it is connected to. Let
us consider a network withN nodes (vertices) andM links (edges), and say that the



probability of a randomly chosen node having degreek is pk, where1 ≤ k ≤ Np.
The distribution of such probabilities is called thedegree distributionof the network.
However, if a node is reached by following a randomly chosen link, then the remaining
number of links (the remaining degree) of this node is not distributed according topk.
Instead it is biased in favour of nodes of high degree, since more links end at a high-
degree node than at a low-degree one [2]. The distribution of such remaining degrees is
called theremaining degree distribution, and is related topk as follows:

qk =
(k + 1)pk+1∑Np

j jpj

, 0 ≤ k ≤ Np − 1 (1)

wherepk is the degree distribution of the network, andqk is the remaining degree
distribution of the network [2]. For scale-free networks, Eq. (1) yields that ifγ = 1
(that is,p(k) = A/k before the cut off), the resulting remaining degree distribution is
uniform, therefore symmetric.

Following Callaway et al. [3] and Newman [2], we define the quantityej,k to be
the joint probability distribution of the remaining degrees of the two nodes at either end
of a randomly chosen link. As pointed out by Newman [2], this quantity is symmetric
in its indices for an undirected graph, that isej,k = ek,j , and it obeys the sum rules∑
jk

ej,k = 1 and
∑
j

ej,k = qk. Assortativeness is formally defined [4] as a correlation

function which is zero for non-assortative mixing and positive or negative for assortative
or disassortative mixing respectively:

r =
1
σ2

q

∑

jk

jk(ej,k − qjqk) (2)

whereσ2
q is the variance of the probability distributionqk. Herer lies between−1 and1,

wherebyr = 1 means perfect assortativeness,r = −1 means perfect disassortativeness,
andr = 0 means no assortativeness (random linking).

If a network has perfect assortativeness (r = 1), then all nodes connect only with
nodes with the same degree. For example, the joint distributionej,k = qkδj,k whereδj,k

is the Kronecker delta function, produces a perfectly assortative network. If the network
has no assortativeness (r = 0), then any node can randomly connect to any other node.
A sufficiency condition for a non-assortative network isej,k = qjqk.

Perfect assortativeness and perfect disassortativeness are not exact opposites. New-
man noted that if a network is perfectly disassortative then every link connects two
nodes of different degrees (types) [10]. However, this requirement is not sufficient to
generate anej,k resulting inr = −1. In fact, ther = −1 case is possible only for
symmetric degree distributions whereqk = q(Np−1−k): ej,k = qkδj,(Np−1−k). In other
words, for a network with remaining degrees0, . . ., Np−1, a node with a degreek must
be linked to a node with a degreeNp− 1− k. Nodes with identical degrees may still be
connected in a perfectly disassortative network (e.g., when their degreej is precisely
in the middle of the distributionq, i.e.,Np is odd andj = (Np − 1)/2). Perfect disas-
sortativeness is not possible for non-symmetric degree distributionsq, because theej,k

distribution must obey the rulesej,k = ek,j , as well as
∑
j

ej,k = qk. On the contrary, any



degree distribution may give rise to a perfectly assortative network. We denote the max-
imum attainable disassortativeness asrm, whererm < 0 (rm = −1 only for symmetric
qk). This limit and the correspondinge(r=rm)

j,k can be obtained, given the distribution
qk, via a suitable minimization procedure by varyingej,k under its constraints.

Let us define the information transfer [1]:

I(q) = H(q)−H(q|q′) (3)

where the first term is the Shannon entropy of the network,H(q) = −
Np−1∑
k=0

qk log(qk),

that measures the diversity of the degree distribution or the network’s heterogeneity,
and the second term is the conditional entropy defined via conditional probabilities of
observing a node withk links leaving it, provided that the node at the other end of the
chosen link hask′ leaving links. Importantly, the conditional entropyH(q|q′) estimates
spurious correlations in the network created by connecting the nodes with dissimilar
degrees — this noise affects the overall diversity or the heterogeneity of the network,
but does not contribute to the amount of information within it. Informally, informa-
tion transfer within the network is the difference between network’s heterogeneity and
assortative noise within it [1, 9].

In information-theoretic terms,H(q|q′) is the assortative noise within the network’s
information channel, i.e., it is the non-assortative extent to which the preferential (either
assortative or disassortative) connections are obscured [9]. Given the joint remaining
degree distributions, the transfer can be expressed as:

I(q) = −
Np−1∑

j=0

Np−1∑

k=0

ej,k log
ej,k

qjqk
(4)

Soĺe and Valverde [1] empirically analysed the relationship between assortativeness
and information transfer, using a set of real world networks. Their conclusion was that
the information transfer and assortativeness are correlated in a negative way: the extent
of disassortativeness increases with mutual information (see Fig. 7 in [1]). We argue
that networks with the same assortativenessr and the same distributionqk could have
different information transfersI — because they may disagree onej,k — and observe
that, under certain conditions (see Section 3), the information transfer non-linearly de-
pends on the absolute value of the assortativeness (i.e. mutual information increases
when assortativeness varies in either positive or negative direction), as illustrated in
Figure 1. Moreover, we capitalize on the fact that, under certain conditions, the knowl-
edge ofr allows one to determine the information transferI(r) uniquely. Specifically,
we intend to recover a network by growing the missing fragments in such a way that the
resulting assortativeness (and hence, the information transfer) is as close as possible to
the original one, while other network parameters are kept constant.

3 Assortative Preferential Attachment

Inspired by the preferential attachment method proposed by Barabasi et al. [4], we
introduce theAssortative Preferential Attachment(APA) method to grow (or recover)
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Fig. 1. Information transferI(r) as a function ofr, for aqk distribution withγ = 1; ’+’ indicate
Np = 4; ’×’ indicateNp = 8; ’∗’ indicateNp = 12; 2 indicateNp = 16.

a network with a specific assortativeness valuer, given a degree distributionpk and a
network sizeN . The remaining degree distributionqk is obtained using equation (1).

We classify networks according to the dependency of the distributione
(r=r′)
j,k on the

assortativenessr′. Within a class, the same distributionqk and the same assortativeness
r result in the same information transferI(r). We study one such class as an example
for network growth and/or recovery with the APA method (other classes are handled by

the method as long as thee(r=r′)
j,k is defined in terms ofr). This class is defined by the

following dependency (template) ofe
(r=r′)
j,k on r′ > 0:

e
(r=r′)
j,k = r′ [ e

(r=1)
j,k − e

(r=0)
j,k ] + e

(r=0)
j,k (5)

wheree
(r=1)
j,k = qkδj,k ande

(r=0)
j,k = qjqk. We assert that if theej,k is given by the de-

composition (5) for a real numberr′ > 0, then the network assortativeness is precisely
r′. This is a sufficient but not necessary condition. A similar sufficient condition also
exists forr′ < 0

e
(r=r′)
j,k = − r′

rm
[ e

(r=rm)
j,k − e

(r=0)
j,k ] + e

(r=0)
j,k (6)

For symmetric distributionsqk, it reduces to

e
(r=r′)
j,k = r′ [ e

(r=−1)
j,k − e

(r=0)
j,k ] + e

(r=0)
j,k (7)

wheree
(r=−1)
j,k = qkδj,(Nq−1−k). These assertions can be verified by substituting tem-

plates (5) — (7) into Eq. (2). The same distributionqk and the same assortativeness
r results in the same transferI(r) because the templates define a unique distribution



e
(r=r′)
j,k for a givenr′. In particular, information transfer within a non-assortative net-

work defined in this way is zero:I(0) = 0.
Now we use theej,k computed by either equation (5) or equation (7) to grow (or

recover) the desired network. When growing a network anew, we create a ‘source pool’
and ‘target pool’ of unconnected nodes, each of sizeN0 = N/2, with the intention
of sequentially adding the nodes from source pool to target pool. When recovering a
network, the target pool contains all the existing nodes of the original network. In the
traditional preferential attachment, the probability of a new link between a source and a
target node depends only on the degree of the target node. In our method, however, the
probability would depend on the degrees of both source and target nodes. We therefore,
begin by probabilistically assigning an ‘intended degree’k to each node in both pools
such that the resulting degree distribution ispk.

Then we assign a probability distributionµ(k, j0), . . . , µ(k, jNp−1) to each target
node with the degreek, whereµ(k, j) is the probability of a source with degreej joining
the target node with the degreek. The probabilityµ(k, j) is calculated asµ(k, j) =
ej,k/pj , then normalized such that

∑
j

µ(k, j) = 1. The distributionµ(k, j) has to be

biased by division bypj , because each source node with degreej does not occur in
the source pool with the same probability. In other words, sequential addition would
not maintainej,k, and the biased probabilityµ(k, j) accounts for that. Onceµ(k, j) is
generated, each source node with degreej is added to the target pool and forms a link
to a target node with degreek with probabilityµ(k, j). For example, if there are twice
as many source nodes with degreej2 than those with degreej1 (i.e.,p(j2) = 2 p(j1)),
while e(k, j2) = e(k, j1), then the biased probabilitiesµ(k, j1) andµ(k, j2) would be
such thatµ(k, j2) = e(k, j2)/p(j2) andµ(k, j1) = e(k, j1)/p(j1) = 2µ(k, j2). This
ensures that nodes with degreej1 (represented twice as scarce as the nodes with degree
j2) would find it twice as easy to form a link with a target node with degreek. When a
target node withk degrees forms its last,k-th, link, all its probabilitiesµ(k, j) are set
to zero (i.e., this node will not form any more links). The grown network will thus have
the desired joint distributionej,k, and hence the desired assortativenessr′.

When recovering a network rather than growing it anew, the probabilistic assigning
of intended degrees to target nodes with existing links may deviate from the intended
ej,k, and APA method may be outperformed by a heuristic with recursive matching of
intended and existing degrees. Such an alternative, however, is NP-hard. Our intention
is to demonstrate that APA method does not significantly reduce solutions’ quality.

4 Simulation Results and Analysis

We utilized the APA method to grow and/or recover scale-free networks with varying
assortativeness values. Each experiment involved a set of networks with fixed degree
distributionsqk (that is, fixedγ = 1, or γ = 3, andNp = 16), and varying assorta-
tiveness valuesr = 1, r = 0 andr = rm. In the caseγ = 1, the disassortativeness
extremerm = −1. Each original network (for eachr) was grown with APA, and re-
sulting information transferI0(r) provided the point of reference. Then the network
was progressively modified by removing a certain percentage (deficit)δ of nodes and
the links connected to these nodes (δ varied from1% to 99%). The APA method was



applied to each modified network, and information transferIδ(r) was computed for the
recovered network. The information-transfer distanceDδ(r) = |I0(r) − Iδ(r)| deter-
mined the success of the recovery in terms of information transfer. The experiments
were repeated10 times for each deficit levelδ, and averaged intoDδ(r).

We begin our analysis with symmetric distributions,γ = 1 andNp = 16. The
most challenging cases involve recovering highly assortative (e.g., perfectly assorta-
tive, r = 1) or highly disassortative (e.g., perfectly disassortative,r = −1) networks.
These cases are more difficult than recovering non-assortative networks (r = 0) because
the probabilistic assigning of intended degrees to target nodes with existing links may
deviate from the intendedej,k, but any such deviation would not harm non-assortative
networks. Figure 2 plotsDδ(r) for both extreme casesr = 1 andr = −1. It can be
observed that, if the deficit levelδ is below a certain thresholdδ0, a full recovery of
information transfer is possible:Dδ(r) = 0 for bothr = 1 andr = −1. As the deficit
levelδ increases, it becomes harder to recover the transfer, but the distanceDδ(r) grows
slower and stabilizes after reaching a certain height. However, at a certain critical level
δt, there is a final transition to the region where the method cannot always follow the
intendedej,k and departs from the corresponding templates. This results in a higher
variance of the information distance whenδ > δt (especially visible in Figure 2, right,
for r = −1, which is less robust than the caser = 1). Figures 3 and 4 plot, respectively,
average and standard deviation ofDδ(r) over10 experiments: the critical levelsδt are
evident, pinpointing phase transitions as the deficit surpasses the levelδt.
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Fig. 2. Difficulty of recovery forγ = 1. Left: r = 1 (δ0 ≈ 20%, δt ≈ 95%). Right: r = −1
(δ0 ≈ 10%, δt ≈ 70%).

Figure 5 plotsDδ(r) for the non-assortative caser = 0. Interestingly, a full recovery
is possible in this scenario for either very low or very high deficit levelδ. The reason for
such symmetry is simple: the low levelsδ present no challenge as the missing network
fragments are small, while the high levelsδ leave the method a lot of freedom in choos-
ing the random (non-assortative) connections. For example, if a non-assortative network
is regrown completely anew, it will attain the point-of-reference information transfer.
Thus, there is a maximal difficulty (symptomatic of bell-shaped complexity curves) at
the mid-range ofδ. We should also note that the information distanceDδ(r) is overall
much smaller than that of the cases of highly assortative (disassortative) networks, as it
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Fig. 3. Average ofDδ(r) for γ = 1. Left: r = 1 (δ0 ≈ 20%, δt ≈ 95%). Right: r = −1
(δ0 ≈ 10%, δt ≈ 70%).

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 In

fo
rm

at
io

n 
D

is
ta

nc
e

�

Deficit %

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 In

fo
rm

at
io

n 
D

is
ta

nc
e

�

Deficit %

Fig. 4. Standard deviation ofDδ(r) for γ = 1. Left: r = 1 (δ0 ≈ 20%, δt ≈ 95%). Right:
r = −1 (δ0 ≈ 10%, δt ≈ 70%).
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Fig. 5. Difficulty of recovery forr = 0. Left: γ = 1. Right:γ = 3.



is significantly less difficult to find non-assortative connections. The transition pointδt

noted in the plots for extremer’s can now be explained in the light of the complexity
curve. There are two tendencies contributing to the recovery process: one is trying to
reduce the difficulty asδ approaches100% (more choice, or freedom, left by the higher
deficit in constructing the desiredej,k), while the other is increasing the difficulty (the
ej,k of the existing links in the target pool diverges more from the requiredej,k).

We noted earlier that ifγ = 1, the resulting remaining degree distributionqk is
uniform, hence symmetric. For other values ofγ, the resultingqk is not symmetric.
Perfect disassortativeness is possible only for symmetricqk, and therefore, forγ > 1,
e.g. γ = 3, it is not possible to get close to the(r = −1) case. Nevertheless, the
recovery behaviour is similar to the one observed in the scenarios forγ = 1.

Figure 5, right, shows a familiar bell-shaped complexity curve for non-assortative
networks,r = 0. Figure 6, left, showingr = 1, has an extra feature. In addition to
expected full recoveryδ0 threshold for low deficit levels, and transition recoveryδt for
high deficit levels, there is a mid-rangeδm level where the amount of choice available
for recovery completely dominates over the divergence of the existingej,k from the
requiredej,k. The information distance is minimal atδm as the full recovery is attained.
Figure 6, right, showingr = rm ≈ −0.52, is similar to its counterpart from symmetric
degree distribution (γ = 1): there are detectable levels of full recoveryδ0 and transition
recoveryδt. Similar results are observed withγ = 4 (Figure 7).
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Fig. 6. Difficulty of recovery forγ = 3. Left: r = 1 (δ0 ≈ 5%, δm ≈ 55%, δt ≈ 95%). Right:
r = rm ≈ −0.52 (δ0 ≈ 22%, δt ≈ 75%).

The experiments were also repeated for different distribution lengthsNp, and me-
dium assortativeness valuesr. The latter cases showed intermediate profiles, where
Dδ(r) balances between the two identified tendencies (increasing freedom of choice
and increasing divergence ofej,k) asδ approaches maximum deficit.

5 Conclusions

We introduced and applied Assortative Preferential Attachment (APA) method to grow
and/or recover scale-free networks in terms of their information transfer. APA achieves
a required assortativeness value, and hence the information transfer, for a given degree
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Fig. 7. Difficulty of recovery forγ = 4. Left: r = 1 (δ0 ≈ 5%, δm ≈ 68%, δt ≈ 95%). Right:
r = rm ≈ −0.50 (δ0 ≈ 22%, δt ≈ 75%).

distribution and network size. The method covers the extreme cases of perfect assorta-
tiveness and perfect disassortativeness, where the latter is only achievable if the speci-
fied degree distribution is such that the corresponding remaining degree distribution is
symmetric.

We identified a number of recovery features: a full-recovery threshold, a phase tran-
sition for assortative and disassortative networks when deficit reaches a critical point,
and a bell-shaped complexity curve for non-assortative networks. Two opposing ten-
dencies dominating network recovery are detected: the increasing amount of choice in
adding assortative/disassortative connections, and the increasing divergence between
the existing and required networks in terms of theej,k.
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