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Abstract. In this papeJr, we introduce a method, Assortative Preferential At-
tachment, to grow a scale-free network with a given assortativeness value. Uti-
lizing this method, we investigate information-cloning — recovery of scale-free
networks in terms of their information transfer — and identify a number of recov-
ery features: a full-recovery threshold, a phase transition for both assortative and
disassortative networks, and a bell-shaped complexity curve for non-assortative
networks. These features are interpreted with respect to two opposing tendencies
dominating network recovery: an increasing amount of choice in adding assor-
tative/disassortative connections, and an increasing divergence between the joint
remaining-degree distributions of existing and required networks.

1 Introduction

Many biological networks, e.g. gene-regulatory networks, metabolic networks, and pro-
tein interaction networks are often characterized as complex scale-free networks. In this
paper, we consider a taskioformation-cloningof a scale-free network, given its frag-
ment and some topological properties of the original network. The “cloning” is inter-
preted information-theoretically: the resulting network may disagree with the original
one in terms of specific node to node connections, but is required to have equivalent
information transfer. The information-cloning task is partly motivated by needs of net-
work manufacturing, where an “assembly-line” starts with a fragment and continues
with “manufacturing” the rest, subject to topological constraints. Another motivation is
regeneration of scale-free networks which are prone to percolation/diffusion of adverse
conditions, as well as removal of highly connected nodes. Both demands (topology-
oriented manufacturing and regeneration) are referred in this papetasrk recovery

Recovery of networks can be attempted and evaluated in various ways. In this paper,
we aim at a general measure in terms of mutual information contained in the network,
or its information transfer. More precisely, we propose to judge success of the recovery
with respect to the amount of information transfer regained by a resulting network.

Various network growth models have been analyzed in literature [1-4]. One promi-
nent model is the preferential attachment model, which explains power law degree dis-
tributions observed in scale-free networks [4]. In this model, the probability of a new
node making a link to an existing node in the network is proportional to the degree of the
target node. Newman [2] pointed out that this model does not take into account the de-
gree of the source node in influencing the attachment probability, and suggested to con-
sider another tendency for preferential association, measureass@atativenessrhe
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networks where highly connected nodes are more likely to make links with other highly
connected links are said to mix assortatively, while the networks where the highly con-
nected nodes are more likely to make links with more isolated, less connected, nodes are
said to to mix disassortatively. In both cases, the likelihood of creating a link depends
on the degrees of both nodes. Both assortative and disassortative mixing is contrasted
with non-assortative mixing, where no preferential connection can be established.

The extent of assortativeness affects network’s resilience under node removal or
percolation/diffusion of adverse conditions [2]. Our objective is an investigation of how
successful is aetwork recoverin terms of assortativeness and information transfer. We
note that this objective is different from investigation of networks’ robustness properties
such aserror tolerance attack survivability or network fragmentatiothat have been
extensively studied [5—7]. For example, Moreno et al. [7] explored robustness of large
scale-free networks faced with node-breaking avalanches (cascading failures when a
failure of a node triggers subsequent failures of neighbours), and investigated how the
random removal of nodes in a fixed proportion affects the global connectivity and func-
tionality of scale-free networks. Stauffer and Sahimi studied scale-free networks with
annealed disorder [8], when the links between various nodes may temporarily be lost
and reestablished again later on, and observed a number of critical phenomena, e.g.
“the existence of a phase diagram that separates the region in which diffusion is possi-
ble from one in which diffusion is impossible”. This study did not investigate, however,
the role of assortativeness and information transfer in the diffusion process.

Naturally occurring networks display various extents of assortative mixing, and it
is often possible to measure or calculate the level of assortativeness in these networks
[1]. However, it is not straightforward to (re-)grow a network with a level of assortative
mixing specifieda priori. We address this problem and propose a method to grow or
recover a scale-free network with a given assortativeness. We also show that a network
with perfect assortativeness can be grown for any desired degree distribution, whereas
a network with perfect disassortativeness can be grown only if the corresponding ‘re-
maining degree distribution’ for the desired degree distribution is symmetric.

Utilizing this method, we investigate recovery of scale-free networks in terms of
their information transfer. Following Seland Valverde [1], we define the information
transfer as mutual information contained in the network, or the amount of general corre-
lation between nodes. Importantly, the maximum attainable information transfer defines
the network’s capacity, in analogy with information-theoretic notion of channel capac-
ity — the maximum mutual information for the channel over all possible distributions
of a transmitted signal. In general, information transfer is a vital indicator of complex
non-linear behavior in self-organizing systems, and can be associategredtictive
information richness of structure (i.excess entropyandphysical complexit{9].

2 Assortativeness and Information Transfer

We study assortativeness in scale-free networks described by power law degree dis-
tributions, formally specified a®(k) = Ak~"u(k/N,) wherew is a step function
specifying a cut off ak = N,,.

The degree of a node is the number of other nodes to which it is connected to. Let
us consider a network wittv nodes (vertices) and/ links (edges), and say that the



probability of a randomly chosen node having degkes pi,, wherel < k < N,,.

The distribution of such probabilities is called tdegree distributiorof the network.
However, if a node is reached by following a randomly chosen link, then the remaining
number of links (the remaining degree) of this node is not distributed accordjng to
Instead it is biased in favour of nodes of high degree, since more links end at a high-
degree node than at a low-degree one [2]. The distribution of such remaining degrees is
called theremaining degree distributigrand is related t@, as follows:
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wherep, is the degree distribution of the network, aggd is the remaining degree
distribution of the network [2]. For scale-free networks, Eq. (1) yields that # 1
(that is,p(k) = A/k before the cut off), the resulting remaining degree distribution is
uniform, therefore symmetric.

Following Callaway et al. [3] and Newman [2], we define the quartdity to be
the joint probability distribution of the remaining degrees of the two nodes at either end
of a randomly chosen link. As pointed out by Newman [2], this quantity is symmetric
in its indices for an undirected graph, thateis, = e, ;, and it obeys the sum rules

Y ejr = land) e;, = g Assortativeness is formally defined [4] as a correlation
gk J
function which is zero for non-assortative mixing and positive or negative for assortative

or disassortative mixing respectively:

qr = 70§k§Np_]— (1)
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whereog is the variance of the probability distributigp. Herer lies between-1 and1,
wherebyr = 1 means perfect assortativeness; —1 means perfect disassortativeness,
andr = 0 means no assortativeness (random linking).

If a network has perfect assortativeness 1), then all nodes connect only with
nodes with the same degree. For example, the joint distribafign= g6, , whered; ;.
is the Kronecker delta function, produces a perfectly assortative network. If the network
has no assortativeness=£ 0), then any node can randomly connect to any other node.
A sufficiency condition for a non-assortative network js. = q;qx.-

Perfect assortativeness and perfect disassortativeness are not exact opposites. New-
man noted that if a network is perfectly disassortative then every link connects two
nodes of different degrees (types) [10]. However, this requirement is not sufficient to
generate am; ; resulting inr = —1. In fact, ther = —1 case is possible only for
symmetric degree distributions whefe= q(n, —1-&)’ €,k = qx0;j,(N,—1-k)- IN Other
words, for a network with remaining degregs. ., N, — 1, a node with a degreemust
be linked to a node with a degrég, — 1 — k. Nodes with identical degrees may still be
connected in a perfectly disassortative network (e.g., when their dgdsegrecisely
in the middle of the distribution, i.e., N,, is odd andj = (N, — 1)/2). Perfect disas-
sortativeness is not possible for non-symmetric degree distribufidrecause the;
distribution must obey the rules ;, = e, ;, aswell asy  e; . = g,. On the contrary, any
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degree distribution may give rise to a perfectly assortative network. We denote the max-
imum attainable disassortativeness;aswhererm < 0 (ry, = —1 only for symmetric
qr)- This limit and the correspondn‘@r ") can be obtained, given the distribution
gk, Via a suitable minimization procedure by varying, under its constraints.
Let us define the information transfer [1]:

I(q) = H(q) — H(qlq") (3)

Np—1
where the first term is the Shannon entropy of the netwHilg) = — Z qr log(qr),

that measures the diversity of the degree distribution or the networks heterogeneity,
and the second term is the conditional entropy defined via conditional probabilities of
observing a node withk links leaving it, provided that the node at the other end of the
chosen link hag’ leaving links. Importantly, the conditional entrop§(q|¢’) estimates
spurious correlations in the network created by connecting the nodes with dissimilar
degrees — this noise affects the overall diversity or the heterogeneity of the network,
but does not contribute to the amount of information within it. Informally, informa-
tion transfer within the network is the difference between network’s heterogeneity and
assortative noise within it [1, 9].

In information-theoretic termd (¢q|¢’) is the assortative noise within the network’s
information channel, i.e., it is the non-assortative extent to which the preferential (either
assortative or disassortative) connections are obscured [9]. Given the joint remaining
degree distributions, the transfer can be expressed as:

—1N,—1

Z Z ejklog— (4)

7=0 k=0

Sok and Valverde [1] empirically analysed the relationship between assortativeness
and information transfer, using a set of real world networks. Their conclusion was that
the information transfer and assortativeness are correlated in a negative way: the extent
of disassortativeness increases with mutual information (see Fig. 7 in [1]). We argue
that networks with the same assortativeneasnd the same distributiaf), could have
different information transfers — because they may disagree @n, — and observe
that, under certain conditions (see Section 3), the information transfer non-linearly de-
pends on the absolute value of the assortativeness (i.e. mutual information increases
when assortativeness varies in either positive or negative direction), as illustrated in
Figure 1. Moreover, we capitalize on the fact that, under certain conditions, the knowl-
edge ofr allows one to determine the information transfér) uniquely. Specifically,
we intend to recover a network by growing the missing fragments in such a way that the
resulting assortativeness (and hence, the information transfer) is as close as possible to
the original one, while other network parameters are kept constant.

3 Assortative Preferential Attachment

Inspired by the preferential attachment method proposed by Barabasi et al. [4], we
introduce theAssortative Preferential Attachme(PA) method to grow (or recover)
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Fig. 1. Information transfed (r) as a function of-, for agy, distribution withy = 1; '+ indicate
N, = 4; "X’ indicate N, = 8; '« indicate N, = 12; O indicateN, = 16.

a network with a specific assortativeness valugiven a degree distributiop, and a
network sizeN. The remaining degree distributign is obtained using equation (1).

We classify networks according to the dependency of the distribaﬁ[ﬁﬁ'/) on the
assortativeness. Within a class, the same distributigp and the same assortativeness
r result in the same information transfgp-). We study one such class as an example
for network growth and/or recovery with the APA method (other classes are handled by

the method as long as th fk:T/) is defined in terms of). This class is defined by the
following dependency (template) ej‘"):” onr’ > 0:

= L ©

(r=r")
e
wheree!'=" = ¢, ande!';"" = g;qi. We assert that if the; ;. is given by the de-
composition (5) for a real numbet > 0, then the network assortativeness is precisely
r’. This is a sufficient but not necessary condition. A similar sufficient condition also
exists forr’ < 0

r=r’ Tl T=Tm r=0 r=0
e’ ):fr—[e;k L R (6)

For symmetric distributiong, it reduces to

e = e = e e ™

whereej g qk6j,(N,—1—k)- These assertions can be verified by substituting tem-
plates (5) — (7) into Eq. (2). The same distributign and the same assortativeness
r results in the same transfé(r) because the templates define a unique distribution



(r=r

€k ) fora givenr’. In particular, information transfer within a non-assortative net-
work defined in this way is zerd:(0) = 0.

Now we use thes; ;, computed by either equation (5) or equation (7) to grow (or
recover) the desired network. When growing a network anew, we create a ‘source pool’
and ‘target pool’ of unconnected nodes, each of sige= N/2, with the intention
of sequentially adding the nodes from source pool to target pool. When recovering a
network, the target pool contains all the existing nodes of the original network. In the
traditional preferential attachment, the probability of a new link between a source and a
target node depends only on the degree of the target node. In our method, however, the
probability would depend on the degrees of both source and target nodes. We therefore,
begin by probabilistically assigning an ‘intended degre& each node in both pools
such that the resulting degree distributiopjs

Then we assign a probability distributiqrik, jo), . . ., u(k, jn,—1) to each target
node with the degrele, whereu(k, 7) is the probability of a source with degrg@ining
the target node with the degrée The probabilityu(k, j) is calculated ag(k, j) =
e;.x/p;, then normalized such that u(k,j) = 1. The distributionu(k, j) has to be

biased by division by, because ]each source node with degremes not occur in
the source pool with the same probability. In other words, sequential addition would
not maintaine; 5, and the biased probability(k, j) accounts for that. Once(k, j) is
generated, each source node with degreeadded to the target pool and forms a link
to a target node with degréewith probability (&, j). For example, if there are twice
as many source nodes with degrgehan those with degreg (i.e.,p(j2) = 2 p(j1)),
while e(k, j2) = e(k, j1), then the biased probabilitiegk, j1) andu(k, j2) would be
such thatu(k, j2) = e(k,j2)/p(j2) andu(k, j1) = e(k,j1)/p(j1) = 2u(k, j2). This
ensures that nodes with degrgdrepresented twice as scarce as the nodes with degree
j2) would find it twice as easy to form a link with a target node with degre&/hen a
target node withk degrees forms its last;:th, link, all its probabilitiesu(k, j) are set
to zero (i.e., this node will not form any more links). The grown network will thus have
the desired joint distribution; 1, and hence the desired assortativenéss

When recovering a network rather than growing it anew, the probabilistic assigning
of intended degrees to target nodes with existing links may deviate from the intended
ek, and APA method may be outperformed by a heuristic with recursive matching of
intended and existing degrees. Such an alternative, however, is NP-hard. Our intention
is to demonstrate that APA method does not significantly reduce solutions’ quality.

4 Simulation Results and Analysis

We utilized the APA method to grow and/or recover scale-free networks with varying
assortativeness values. Each experiment involved a set of networks with fixed degree
distributionsg,, (that is, fixedy = 1, ory = 3, and N, = 16), and varying assorta-
tiveness values = 1, r = 0 andr = r,,. In the casey = 1, the disassortativeness
extremer,, = —1. Each original network (for eack) was grown with APA, and re-
sulting information transfef,(r) provided the point of reference. Then the network
was progressively modified by removing a certain percentage (defioithodes and

the links connected to these nodés/éried from1% to 99%). The APA method was



applied to each modified network, and information trangfér) was computed for the
recovered network. The information-transfer distafitgr) = |Io(r) — Is(r)| deter-
mined the success of the recovery in terms of information transfer. The experiments
were repeated0 times for each deficit level, and averaged intds(r).

We begin our analysis with symmetric distributions,= 1 and N, = 16. The
most challenging cases involve recovering highly assortative (e.g., perfectly assorta-
tive, r = 1) or highly disassortative (e.g., perfectly disassortative; —1) networks.
These cases are more difficult than recovering non-assortative netwetk3)(because
the probabilistic assigning of intended degrees to target nodes with existing links may
deviate from the intended, ;, but any such deviation would not harm non-assortative

networks. Figure 2 plot®;(r) for both extreme cases= 1 andr = —1. It can be
observed that, if the deficit levélis below a certain threshold,, a full recovery of
information transfer is possiblés(r) = 0 for bothr = 1 andr = —1. As the deficit

level§ increases, it becomes harder to recover the transfer, but the dig¥atgegrows
slower and stabilizes after reaching a certain height. However, at a certain critical level
d¢, there is a final transition to the region where the method cannot always follow the
intendede; ;, and departs from the corresponding templates. This results in a higher
variance of the information distance whé&n- ¢, (especially visible in Figure 2, right,
forr = —1, which is less robust than the case- 1). Figures 3 and 4 plot, respectively,
average and standard deviation/of(r) over 10 experiments: the critical levels are
evident, pinpointing phase transitions as the deficit surpasses thé evel

Information Distance
Information Distance

Fig. 2. Difficulty of recovery fory = 1. Left: r = 1 (6o ~ 20%, é: ~ 95%). Right:r = —1
(00 =~ 10%, 6; =~ T0%).

Figure 5 plotsDs(r) for the non-assortative cagse= 0. Interestingly, a full recovery
is possible in this scenario for either very low or very high deficit |évdlhe reason for
such symmetry is simple: the low leveélpresent no challenge as the missing network
fragments are small, while the high levélkave the method a lot of freedom in choos-
ing the random (non-assortative) connections. For example, if a non-assortative network
is regrown completely anew, it will attain the point-of-reference information transfer.
Thus, there is a maximal difficulty (symptomatic of bell-shaped complexity curves) at
the mid-range ob. We should also note that the information distafggr) is overall
much smaller than that of the cases of highly assortative (disassortative) networks, as it
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is significantly less difficult to find non-assortative connections. The transition foint
noted in the plots for extremés can now be explained in the light of the complexity
curve. There are two tendencies contributing to the recovery process: one is trying to
reduce the difficulty ag approache$00% (more choice, or freedom, left by the higher
deficit in constructing the desired ;), while the other is increasing the difficulty (the

e; i, Of the existing links in the target pool diverges more from the requirgql.

We noted earlier that iff = 1, the resulting remaining degree distributign is
uniform, hence symmetric. For other values+gfthe resultingg; is not symmetric.
Perfect disassortativeness is possible only for symmejriand therefore, foty > 1,
e.g.v = 3, it is not possible to get close to tHe = —1) case. Nevertheless, the
recovery behaviour is similar to the one observed in the scenarias=ot.

Figure 5, right, shows a familiar bell-shaped complexity curve for non-assortative
networks,r = 0. Figure 6, left, showing: = 1, has an extra feature. In addition to
expected full recovery, threshold for low deficit levels, and transition recoveyyor
high deficit levels, there is a mid-rangdg, level where the amount of choice available
for recovery completely dominates over the divergence of the existipgrom the
requirede; ,. The information distance is minimal &, as the full recovery is attained.
Figure 6, right, showing = r,,, ~ —0.52, is similar to its counterpart from symmetric
degree distributiom( = 1): there are detectable levels of full recovégyand transition
recoveryd,. Similar results are observed with= 4 (Figure 7).

Fig. 6. Difficulty of recovery fory = 3. Left: r = 1 (0o =~ 5%, dm = 55%, d: =~ 95%). Right:
r=rm~ —0.52 (60 ~ 22%, & ~ 75%).

The experiments were also repeated for different distribution lenythsnd me-
dium assortativeness values The latter cases showed intermediate profiles, where
Ds(r) balances between the two identified tendencies (increasing freedom of choice
and increasing divergence of ;) asé approaches maximum deficit.

5 Conclusions

We introduced and applied Assortative Preferential Attachment (APA) method to grow
and/or recover scale-free networks in terms of their information transfer. APA achieves
a required assortativeness value, and hence the information transfer, for a given degree
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Fig. 7. Difficulty of recovery fory = 4. Left: r = 1 (60 = 5%, 0 =~ 68%, §; =~ 95%). Right:
r =1, ~ —0.50 (6o ~ 22%, 6: ~ 75%).

distribution and network size. The method covers the extreme cases of perfect assorta-
tiveness and perfect disassortativeness, where the latter is only achievable if the speci-
fied degree distribution is such that the corresponding remaining degree distribution is
symmetric.

We identified a number of recovery features: a full-recovery threshold, a phase tran-
sition for assortative and disassortative networks when deficit reaches a critical point,
and a bell-shaped complexity curve for non-assortative networks. Two opposing ten-
dencies dominating network recovery are detected: the increasing amount of choice in
adding assortative/disassortative connections, and the increasing divergence between
the existing and required networks in terms of thg.
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