
Guided self-organization

Typically, self-organization is de-
fined as the evolution of a system into
an organized form in the absence of ex-
ternal pressures. A broad definition of
self-organization is given by Haken
(2006).

“A system is self-organizing if it
acquires a spatial, temporal, or
functional structure without
specific interference from the
outside. By ‘specific’ we mean
that the structure or functioning
is not impressed on the system
but that the system is acted upon
from the outside in a non-
specific fashion. For instance,
the fluid which forms hexagons
is heated from below in an en-
tirely uniform fashion and it ac-
quires its specific structure by
self-organization.”
Another definition is offered by

Camazine et al. (2001) in the context
of pattern formation in biological
systems.

“Self-organization is a process
in which pattern at the global
level of a system emerges solely
from numerous interactions
among the lower-level compo-
nents of the system. Moreover,
the rules specifying interactions
among the system’s components
are executed using only local in-
formation, without reference to
the global pattern.”
These definitions capture three im-

portant aspects of self-organization.
First, it is assumed that the system has
many interacting components and ad-
vances from a less organized state to a
more organized state dynamically over
some time, while exchanging energy,
matter, and/or information with the en-
vironment. Second, this organization is
manifested via global coordination and
the global behavior of the system is a
result of the interactions among the
agents. In other words, the global pat-
tern is not imposed on the system by an

external ordering influence (Bonabeau
et al., 1997). Finally, the components,
whose properties and behaviors are de-
fined prior to the organization itself,
have only local information and do
not have knowledge of the global state
of the system—therefore, the process
of self-organization involves some lo-
cal information transfer (Polani, 2003;
Lizier et al., 2008).

Self-organization may seem to con-
tradict the second law of thermody-
namics that captures the tendency of
systems to disorder. The “paradox” was
explained in terms of multiple coupled
levels of dynamic activity within
the Kugler–Turvey model (Kugler and
Turvey, 1987): self-organization and
loss of entropy occurs at the macro-
level while the system dynamics on the
micro-level (which serves as an entropy
“sink”) generates increasing disorder.

Kauffman (2000) suggested that
the underlying principle of self-
organization is the generation of con-
straints in the release of energy. Ac-
cording to this view, the constrained
release allows for such energy to be
controlled and channeled to perform
some useful work. This work in turn
can be used to build better and more ef-
ficient constraints for the release of fur-
ther energy and so on. Adding and con-
trolling constraints on self-organization
opens a way to guide it in a specific
way.

In general, one may consider dif-
ferent ways to guide the process (dy-
namics) of self-organization, achiev-
ing a specific increase in structure or
function within a system. This guid-
ance may be provided by limiting the
scope or extent of the self-organizing
structures/functions, or specifying the
rate of the internal dynamics, or simply
selecting a subset of all possible tra-
jectories that the dynamics may take.
The formal definition of guided self-
organization and its properties (robust-
ness, adaptability, scalability, etc.) re-

mains an elusive task but there were
a few recent attempts, specifically
within information theory and dynami-
cal systems: universal utility functions
(Klyubin et al., 2005), information-
driven evolution (Prokopenko et al.,
2006a; 2006b), robust overdesign (Ay
et al., 2007), reinforcement-driven ho-
meokinesis (Martius et al., 2007),
predictive information based homeoki-
nesis (Ay et al., 2008), etc. However,
the lack of agreement of what is meant
by complexity, constraints, etc., and a
common methodology across multiple
scales leaves any definition of (guided)
self-organization somehow vague, in-
dicating a clear gap (Polani, 2007). Fill-
ing this gap and finding new and sys-
tematic ways for the guidance of self-
organization is the main theme of GSO
Workshops, and the works collected in
this special issue aim to identify essen-
tial guiding principles.

The perspective by Polani (2009)
argues that information (defined as a
reduction in uncertainty, i.e., Shannon
information) is a critical resource for
biological organisms and that it trades
off with the available metabolic energy.
This leads to the parsimony principle
suggesting that if organisms would de-
velop a suboptimal information pro-
cessing strategy, this would lead to a
waste of metabolic energy. The parsi-
mony principle captures the amount of
information necessary to achieve a par-
ticular utility and aims to provide an
implicit measure of the cost per time re-
quired to process the sensoric informa-
tion for generating a desired behavior:
“an organism that realizes an evolution-
arily successful behavior will at the
same time attempt to minimize the re-
quired sensoric information to achieve
this behavior.” Polani also discusses
other information-theoretic principles
as candidates for understanding the in-
formation dynamics of organisms, con-
cluding that information may be a fun-
damental currency underlying the
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success of living organisms—the “cur-
rency of life.” If this is indeed the case,
then a new level of “quantitative pre-
dictiveness” can be introduced into bi-
ology and artificial life.

The paper by Prokopenko et al.
(2009) considers a simple information-
theoretic model for evolutionary dy-
namics approaching the “coding
threshold,” where the capacity to sym-
bolically represent nucleic acid se-
quences emerges in response to a
change in environmental conditions.
The study argues that a coupling be-
tween a “proto-cell” and its proto-
encoding becomes beneficial in terms
of preserving the proto-cell’s informa-
tion in a specific noisy environment,
that is, this coupling becomes viable
only at a certain “error threshold” level.
A limited reduction in the information
channel’s capacity, brought about by
the environmental noise, which created
the appropriate selection pressure for
the coupling between a proto-cell and
its encoding is another example of the
parsimony principle. As argued by Po-
lani (2009), another important benefit
of the information-theoretic view is the
bookkeeping property of information:
information acquisition by an organism
increases the organization of its knowl-
edge about the environment. Such
knowledge is general—it abstracts
away the details of the inner
mechanism—and may typically be
shared across different organisms. The
high degree of universality found in ge-
netic code lends significant support to
this view. Specifically, the paper by
Prokopenko et al. (2009) investigates
whether different proto-cells could
horizontally transfer and share such
proto-encodings via a joint encoding,
even if they had slightly different indi-
vidual dynamics.

Furthermore, the parsimony prin-
ciple discussed by Polani (2009) sug-
gests that the adaptation processes op-
erating on different time scales
(including both the long-term evolu-
tionary process and short-term lifetime
learning dynamics) may “conspire” to
minimize the cost for the complexity of

a particular task, given the set of avail-
able sensors and actions. However, the
overall complexity of neural dynamics
may increase over evolutionary time.
This is investigated in the paper by Yae-
ger (2009) who simulates an artificial
life environment, Polyworld, where
agents use their neural networks in try-
ing to survive in the environment. The
study utilizes a specific information-
theoretic metric for capturing the com-
plexity of the neural dynamics—“TSE
complexity” (for
the authors’ initials, Tononi–Sporns–
Edelman). In particular, this work pro-
poses that periods of complexity
growth correspond to periods of behav-
ioral adaptation. As the evolutionary
process explores different forms of em-
bodiment, the organism may need to re-
discover new information-processing
limits that are made available by the
changes. Thus, given the embodiment,
the parsimony principle would suggest
to minimize the processing cost by
varying the available neural machinery
while satisfying a suitable (and possi-
bly new) utility function. One may
speculate that in Polyworld, two con-
straints guide self-organization of
agents’ neural networks: (i) the utility
function (i.e., reproduction), which
may need a more complex neural rewir-
ing and (ii) the parsimony principle (a
lesser cost per task), which may keep
the complexity required by the first
constraint as minimal as possible,
avoiding an unnecessary complexity
growth. Confirming this conjecture,
Yaeger observes a tendency “to weakly
stabilize complexity at a ‘just good
enough’ level.”

The paper by Boedecker et al.
(2009) studies reservoir computing
paradigm recently advanced in the field
of recurrent neural networks. The study
combines both general and problem-
specific methods arguing for the cor-
rect balance between (i) a generic/
universal way to prototype the
system—in this case, a recurrent neural
network initialized with permutation
matrices for the reservoir
connectivity—and (ii) a problem-

specific guidance—in this case, a train-
ing method based on intrinsic plasticity
that makes use of the input signal in or-
der to shape the output of the reservoir
neurons according to a desired (target)
probability distribution.

In general, one may suspect that a
formal definition of guided self-
organization would require an elegant
and natural way to combine both task-
independent objectives (e.g., parsi-
mony principle, predictive information,
etc.) with task-dependent constraints
and drives. This, of course, remains a
subject of future research—however,
the studies presented in this issue pro-
vide some directions and examples.
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