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Abstract. In this papeIE], we use Bayesian Networks as a means for unsupervised
learning and anomaly (event) detection in gas monitoring sensor networks for un-
derground coal mines. We show that the Bayesian Network model can learn cycli-
cal baselines for gas concentrations, thus reducing false alarms usually caused by
flatline thresholds. Further, we show that the system can learn dependencies be-
tween changes of concentration in different gases and at multiple locations. We
define and identify new types of events that can occur in a sensor network. In
particular, we analyse joint events in a group of sensors based on learning the
Bayesian model of the system, contrasting these events with merely aggregating
single events. We demonstrate that anomalous events in individual gas data might
be explained if considered jointly with the changes in other gases. Vice versa, a
network-wide spatiotemporal anomaly may be detected even if individual sensor
readings were within their thresholds. The presented Bayesian approach to spa-
tiotemporal anomaly detection is applicable to a wide range of sensor networks.

1 Introduction

Since the 1980s, electronic gas monitoring sensor networks have been introduced in the
underground coal mining industry. However, no current system can provide site spe-
cific anomaly detection. This means monitoring systems often give false alarms, which
can be costly to the mining operation. The periodic variation in the gas concentration
also increases the number of false alarms in these flat line threshold based systems.
Further, current systems ignore the spatial relations between data gathered at different
sensor network nodes. These spatial relationships between data could identify anoma-
lies missed by individual sensors. Conversely, the spatial relationships could explain
away the anomalies identified by the individual gas sensors, thus avoiding false alarms.

Currently, the existing system integrates and interprets incoming data in accordance
with a pre-determined set of rules, produces a risk profile, and autonomously initiates
a response to a breach of these rules. A problem with this approach is that no clear-cut
definitions of abnormal situations with respect to the concentration of different gases
exist, so that it is difficult to produce a good set of rules.
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The underground coal mining industry has been struggling with the issues of site-
based moving threshold levels for critical gases since the introduction of electronic gas
monitoring systems in the 1980s. No satisfactory, scientifically validated methodology
is in existence that can provide a mine with its own specific moving threshold levels.
Best guess estimates, universal rules-of-thumb and experience-based trigger points are
the industry norm [[1]]. In this paper, we used Bayesian Networks as a means for unsu-
pervised learning of temporal and spatiotemporal patterns in underground coal mining
gas data, and applied the approach to spatiotemporal anomaly detection.

Section 2] presents the problem of anomaly detection in general sensor networks. In
Sec.[3l we define the problem specifically for underground coal mining sensor networks.
Section [] describes the approach we took to learn and analyse the data. The results of
identified anomalies are shown in Sec.[3 Finally, Sec.[f] presents the conclusions and
future work.

2 Background

In order to be successful, sensor networks must detect, evaluate and diagnose patterns in
diverse situations, forecast likely future scenarios, make decisions, initiate actions based
on these decisions, and adapt to change. Adaptive anomaly detection in spatiotemporal
sensor network data is, thus, one of the main challenges in this field. Conventional
control theory and SCADA (Supervision Control And Data Acquisition) systems are
employed for anomaly detection in these sensor networks, however, they are inadequate
to deal with scenarios which require flexible acquisition and distribution of information.

For our particular application, each node in the sensor network monitors several dif-
ferent kinds of gases in order to ensure safety and productivity in a coal mine. We
consider an existing system which takes measurements and interprets incoming data.
The single nodes in the sensor networks cover wide areas. Since they are used for the
prevention of hazards, rather than for recovery after a hazard, the position of each node
is fixed and known. Our scenario also allows for the use of non-wireless communi-
cation between single nodes, whereas for applications in hazard recovery, cable-based
communication could possibly be disrupted by collapsed roofs or explosions.

The application of sensor networks in coal mines seems to be natural, because several
different kinds of data have to be collected for safety reasons. For example, in [2]], a
sensor network is used to detect leakages of gas, dust or water, and to monitor the
density of oxygen in different areas. For this particular application, data from different
nodes is used to create a qualitative overview, describing for example the extent of water
leakages or areas with a high density of oxygen. For our application, monitoring gases
at each node separately from each other is not sufficient to detect anomalies: densities of
single gases at one location might appear normal, but the simultaneous measurement of
densities of other gases at other locations could in fact indicate a potentially dangerous
situation. Other properties of the scenario make the detection of abnormal situations
more difficult: as mentioned above, there is no good definition of an abnormal situation,
and one of the reasons for this is the rarity of abnormal events in the available data.
Moreover, not only does the spatial distribution of gases have to be considered, but so
too does the development of gas distributions over time.
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Fig. 1. Gas concentration data from a sensor node in an Australian coal mine. Data gathered for
oxygen is in units of percentage of air, the other gases are in of parts per million. The horizontal
axis indicates the time (mm/dd) the data was taken.

For the research presented in this paper, we are using data gathered from deployed
sensor networks in existing Australian coal mines for testing the algorithms. Each sen-
sor node measures gas concentration, e.g. at 30 second intervals, of a number of gases,
e.g. methane (CHy), carbon dioxide (CO,), carbon monoxide (CO) and oxygen (O2).
Figure[flshows the data from a sensor node in the first mine for three weeks in July 2006.

Intuitively, anomalies in our data are irregular patterns in multiple time series, e.g. a
combination of CHy — CO4 — CO — Os. In general, the problem is to detect an abnor-
mal event distributed over different sensors, although it is not clear what exactly “abnor-
mal” means a priori. In our particular coal mine sensor network, all data is passed on to
a central node, so that currently the problem of a distributed computation of abnormal
situations is not pressing. Nevertheless, we pursue a method that has the potential to be
distributively computed if required.

Methods to identify previously unseen, i.e. abnormal situations in data have previ-
ously been investigated [3/4]. The method in [3] uses self-organising maps (SOM) to
describe normal system behavior, and to detect abnormal behavior. In order to use SOM,
the authors present a new measurement to find out if a dataset and a map are matching
based on a k-nearest neighbor approach.

The method introduced in [4] detects abnormal events in signals using Support Vec-
tor Machines (SVM). The method can be used online, i.e. without using a fixed training
set: the last n observed input vectors are used for training. In the first of the proposed
algorithms, a special kind of distance measure is used to compare the distance of a
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new vector to a region created by the last n input vectors. A distance greater than a
given threshold is considered as abnormal. The second algorithm is similar, but delays
the output by a small number of measurements /N. Then, the set of N new vectors is
tested for abnormality in a similar way to the first algorithm, leading to a more robust
approach.

Both approaches expect all the data to be present in a single node, i.e. they could
be used in the centralised fashion that coal mine sensor network deals with the data
currently. We have, however, chosen to use a method based on Bayesian networks,
because it would support inference in both distributed and centralised settings (see also
[S). In addition, our approach directly computes a likelihood measure for new data,
thus allowing unsupervised learning for anomaly detection.

3 Problem Definition

One of the major road blocks we face in anomaly detection inside underground coal
mines is complete lack of ground truth. This is because every mine is unique, so what
is considered to be an anomaly in one mine may not be an anomaly in another. Mining
experts do not have general purpose rules for anomaly detection that are applicable to
every site. Therefore, our purpose is to devise an adaptive system that learns from the
data specific to a mine, and identifies anomalies that are specific to the mine.

3.1 Temporal Anomalies in a Single Gas

Many current automatic detection systems use a flat baseline or threshold for anomaly
detection. However, gas concentration in mines have a moving baseline depending on
factors such as atmospheric pressure. That is, the mine “breathes” through the day,
and the concentration of the various gases increases and decreases periodically. A flat
baseline system does not capture this characteristic of the data, thus giving many false
alarms and false negatives.

We consider an anomalous event or simply event in the time series data as a data
point that results in a low likelihood given a model we have constructed of the time
series. That is, the resulting likelihood value of the data point is an outlier from the
general distribution of likelihood values of the other data. We will define likelihood,
outliers and consequently the term ‘event’ formally after presenting the approach to the
problem in Sec. 4l

This problem can be easily seen in the CO data in Fig. [Il For example, the data
from July 16th to July 20th show a cyclical pattern in the concentration. A flat baseline
system might assume the peak around July 18th is an anomaly, while we can see it’s
just a part of the moving cycle. Figure[ also illustrates cyclical patterns.

3.2 Joint Temporal Anomalies in Multiple Gases

When several single events occur at the same time, they indicate a higher importance
event. The current literatures identifies these as composite events and group events.
A composite event, as defined by Kumar ef al. [6] is a combination of two or more
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single events. Jiao et al. [[7] used the term “group level event” in similar fashion to the
composite event, that is the aggregation of multiple local events. Informally, a group
event occurs when in a group of sensors, each sensor identifies an event.

While the aggregation of single events might be adequate for the situations described
in the papers above, we need to define other types of events for our data. In Fig. [T] for
example, we can see around July 7th, the concentrations of CO, COy both dropped,
however, at the same time the concentration of Oy increased. These single events, as a
combination, is considered safe by mining experts. Conversely, while no events may be
identified by isolated analysis of single gases, as a combination, they may be consid-
ered an event. We define three new terms in event detection for sensor networks: joint,
explained and implicit events. Below we describe each event informally, they will be
defined mathematically in Sec.[4.4]

A joint event is a combination of data from sensors that results in a low likelihood
given the model for the combination of single sensors. Consequently, we define ex-
plained and implicit events where there is a difference of opinion in joint event and
single events.

An explained event is where there are detected anomalies in single gases, but the
combination of time series do not result in a joint event. The CO-CO3-Os event situation
described above would be classified as an explained event. The opposite to an explained
event is an implicit event. This is when isolated analysis of single gases do not cause
any alarms, however, as a joint event, these measurements are significant enough to
trigger an alarm.

3.3 Network-Wide Spatiotemporal Anomalies

The events described above relate to gases at a single spatial location, however, they
also apply to data of different sensor nodes in the network. In situations involving dif-
ferent sensor nodes in the network, a composite event would involve two or more single
events at different nodes, and a group event is one where every sensor node in the group
identified an event [[7.6].

A network-wide “explained” event is when a truck passes through the mine. The
exhaustion gases may trigger alarms in individual gases as concentration will increase
suddenly. However, this event should not be considered a network-wide anomaly in
the data, as other nodes jointly explain it away. An example of an “implicit event” in
the network is an increase of methane at one location of the mine, accompanied by an
increase in oxygen at another location. Thus no joint event is identified at each sensor
node, but a network-wide joint event could be identified for the combination of the
sensor nodes.

4 Approach to the Problem

Our approach to the problem of anomaly detection is to use Bayesian Networks (BNs).
The networks are constructed via a learning process from some training data. When new
observations are made, we can use inference on the network to find a likelihood value
of the network given the new observations. An anomaly is identified if the likelihood
value is low.
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4.1 Bayesian Networks

A Bayesian Network is a graphical model that takes a statistical approach to learning.
Statistical learning uses probability distributions to model variables that represent the
gathered data, thus taking into account the stochastic nature of real data. Graphical
models expose the underlying relationship between probabilistic variables in a simple
and clear form.

Specifically, Bayesian Networks are a form of acyclic directed graph (ADG) [§]] in
that if one variable of the network is dependent on another, then the reverse cannot be
true. This relationship between two variables is represented in BNs by the direction of
an arrow connecting the two. The variables of a BN are called nodes of a BN. The node
with an arrow pointing to it is dependent on the node with the same arrow pointing away
from it. The nodes connected by an arrow have a parent/child relationship, where the
child node is dependent on its parent node. (See Fig.[2lfor one of the network structures
used in this paper.)

In a Bayesian network, each random variable is independent of its non-descendants
in the graph given the state of its parents. This independence can be exploited to reduce
the number of parameters needed to characterise the network. Thus it is possible to
efficiently compute posterior probabilities given some evidence or observations. One
set of probability parameters are encoded for each variable, in the form of the local
conditional distribution given the variable’s parent. Using the independence statements
encoded in the network, the joint probability distribution is uniquely determined by
these local conditional distributions [910]. We present the general form of this joint
probability distribution in the following paragraphs.

We use capital letters such as X, Y for names of random variables, and lower cases
x,y for values taken by these variables. A set of variables such as { X7, X5, X3} are
written as X, likewise, a set of values such as {z1, xo, 23} are written as x. Thus, x are
values taken by X.

Let P(U) be a joint probability distribution over U = {Xj, ..., X}, where X; is
a random variable expressed by a node of the network. A Bayesian Network for U is a
pair B = (G, ©). The first component, G, represents the graph structure of the network.
G is an ADG whose nodes correspond to the random variables X7, ..., X}, and whose
edges represent direct dependencies between the variables. The second component, O,
represents the set of conditional probabilities that quantify the nodes of the network. It
contains a set of parameters x| nx, = Pp (X;|IIx,) for each node X;, where Iy,
denotes the set of parents of X; in G. A Bayesian Network B defines a unique joint
probability distribution over U given by

k k
P(U) = [[ Pe(XilTx,) = [ ] 0x. 111, - (D
=1

i=1

In a Bayesian Network the learning process is to estimate the parameter set © as
well as to find the structure of the network, G. The objective in the learning is to find a
B = (G, ©) that “best describes” the probability distribution over the training data [L1]].
In this paper, however, we will not be learning the structure of the networks.
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4.2 Network Structures for the Problem

Let a single variable time series be X = {1, 2, ..., 2N}, where N is the total number
of data points in the series. We can embed this data in a d-dimensional phase space as
follows [12]:

Yyt = (:Etv Tt—ry--- 7$t7(d71)‘r) ) (2)
where 7 is the time delay, d is the embedding dimension, and ¢t = d,d + 1,..., N.
Henceforth, we set 7 = 1, thus Eqn. 2lbecomes:

Yy = (wtawt—la'--axt—d-‘rl)a (3)

Fig. 2. Bayesian Network model used for learning and inference data in embedded phase space

Figure 2] shows the model used to learn this data. The network is constructed from
the underlying dependencies in a time series, that is the data at time ¢ is dependent on
the dataattimet — 1,...,t —d + 18 The joint distribution of the model is:

d—2
PU) = P(X¢|Xt-1,..., Xt—ay1)P(Xt—a11) H P(Xi k| Xi— (k1)) D)
k=1
where U = {X;_1,...,Xt_q41}. All the nodes are modelled as one dimensional

Gaussians. For example, a BN model of Fig. 2] with d = 3 has the dependencies as
Xi—o — X413 — Xy as well as Xy_o — X;. The joint distribution of the model
will be P(U) = P(X;|X;—1, Xt—2)P(X;—1|X¢—2)P(X;—_2), where each P(-) is a
Gaussian or a conditional Gaussian distribution.

Figure 3] shows a model that may be used to learn and inference the combination of
three sensors in the system. In this case, the network is composed of three ‘subnets’,
that is the sets of nodes {A¢, A¢—1,. .., Ai—m}, etc. Each subnet has the same network
configuration as that of the network in Fig.[2l The value for m, that is, the length of the
subnet, is not necessarily the value of d, which is the number of nodes for the network
in Fig. 2 Since {B;_1,..., Bi_m} is independent of A;, and {Cy_1,...,Ci_m} is
independent of A; or By, we can write the joint distribution of the model as:

P(U) x P(A)P(B)P(C)P(B;|A)P(Cy|A)P(Cy|By), %)

where P(A) is the joint distribution of {A;, A¢_1, ..., At— }, and similarly for P(B)
and P(C).

% The network in Fig. @is simply a d — 1-th order Markov model presented in the Bayesian
Network representation.
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Fig. 3. Bayesian Network model used for learning the combined data from three sensors

Figure [3] describes a network for anomaly detection in the combination of gases at
one spatial location, however, it can be easily adapted for detection across different spa-
tial locations. For example, with the same network, A; could be gas 1 from location 1,
while B; and C} are gases 2 and 3 from location 2.

4.3 Learning and Inference

Since the structure of the network is known, only the parameter set © needs to be
learnt. The Maximum Likelihood [13l14] algorithm is thus used to estimate ©. In the
ML estimator, the likelihood function, p(x|f), is treated as a function of € for fixed
x, where :c§ is the j-th data sample for the node X; in the Bayesian Network. This
likelihood function can be used to evaluate the choices of . The ML estimator chooses
the value of  that maximises the probability of the data x:

O = arg maxg p(x|0). (6)

This learnt network can then be used to do inference on new data. That is, given the
observed values of some of the nodes in the network, compute the probability distribu-
tion of the other nodes. Inference allows us to perform three types of analyses on the
data:

1. Prediction, where the probability distribution of the child node can be computed
given the values of the parents. In our case, the prediction of values in X in Figure[2l
given the values of {X;_1,..., Xi—at1}-

2. Diagnosis, where we can find the probability distribution of the parent node given
the value of the child. In Figure [3] for example, given the values of B; and Cy, we
can find the values of A;.

3. Anomaly detection using the likelihood values, which is actually a byproduct of
inference operation. The likelihood value measures how well the observations fit
the Bayesian Network model. Anomalies would result in a low likelihood value,
while data that fit the model well will result in high likelihood values.

4.4 Anomaly Definitions

We will now define anomalies and the various events described in Sec. Bl formally. For
all definitions below, the null hypothesis, H is the hypothesis that the evidence is true,
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and the p-value is the probability of how well the evidence supports the Hy hypothesis
(smaller p-values favour the rejection of Hy). The significance value, « is set such that
if p < a, then the null hypothesis is rejected.

Let Ly, = L(y:|0B,) be the log likelihood of the Bayesian Network given data
point y; in a d-dimensional phase space (as shown in Figure2)), and Py, (61 ) be the
distribution of Ly, overall. Then

Definition 1. y; is an event iff the following H is rejected:
Hy: Ly, ~ Pry (GLY)

For the spatiotemporal events, let u; = {y;,y?,...,y?"} be the set of n data points in
the d-dimensional phase space at time ¢. For example, with three gases A, B, and C,
u; = {ay, by, i}, where a; = {ag,a¢—1,...,a,_(4-1)}, etc.

Definition 2. u; is a composite event when two or more of {yt,y?,...,y"} is an
event.

Definition 3. w; is a group event iff y! is an event, Vyi € u,.

In Definitions[TH3] we use log likelihood of the BN for data from a single sensor. Now
we utilise the log likelihood of the BN for combined sensors. Let L,, = L(u|0p,)
be the log likelihood of the Bayesian Network for u; (e.g. as shown in Figure[3)), and
Pr; (01 ) be the distribution of Ly, .

Definition 4. u; is a joint event iff the following H is rejected:
HO N Lut ~ PLU (GLU)

Definition 5. u; is an explained event iff u; is not a joint event but any one of
1 2 .
{y:,¥i,..., ¥} is an event.

Definition 6. w; is an implicit event iff v is a joint event but none of {y},y?,...,y"}
is an event.

The possibility of explained and implicit events is due to the fact that in general, Ly,
and )", Ly; may differ significantly.

5 Results and Discussion

To learn the Bayesian Network using the phase space representation of Eqn. 2l we used
d = 20 and 7 = 1. The process of finding d is described in detail in Appendix [Al
Fraser and Swinney suggested to use the mutual information method to find 7 [15].
However, we found through experiments, that 7 = 1 gives much better inference results.
We trained the networks using the first half of the data as presented in Fig.[Il and run
inference on the second half of the data. Table[Tlshows the normalised root mean square
error (NRMSE) of the inference. NRMSE gives a useful scale-independent measure of
error between data sets of different ranges.

Figure @l illustrates a cyclical baseline for a 7 day period of CHy sensor data from a
second mine in Australia, contrasting actual and predicted data. A cyclical baseline can
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Table 1. Prediction errors (NRMSE) for the data using the Bayesian Network in Fig.

Methane|Carbon dioxide|Carbon monoxide|Oxygen
0.0404 0.0210 0.0468 0.0302

1081
10.7 -
10.6
105
1041
10.34
10.2 %
10.1 E
10:% E
9.9 R » —+— raw data

9.8+ —*— cyclical baseline

03/25 04/01

Fig. 4. Cyclical prediction of CH4 for a 7 day period. Data are from a second mine in Australia.

be used to set moving thresholds around it, so that the fluctuating sensor data are within
the thresholds. This in general will reduce false alarms.

Figure[3lshows the results of likelihood computation for the four gases in the data. For
each sub-figure, we plot the actual data (bottom plot, left scale) with the logarithm of the
likelihood (top plot, right scale). The Kolmogorov-Smirnov (KS) hypothesis test [16]]
was used to determine the anomalies from the likelihood values. The KS test is used
because it can compare the test sample against any distribution, and it can be seen from
Fig.[Blthe log likelihoods do not fit a normal distribution, which is assumed by t-test or
z-test. We applied the KS test using the extreme value distribution, which is a distribution
skewed to the left as fitting for the likelihood results. The parameters of the distribution
are set to be the mean and standard deviation of the likelihood values in each set of results.

It should be pointed out that in reality, there are no anomalies of real concern in
this data set. That is because in an actual mining operation, events that are significant
enough to raise an alarm and evacuate the mine are very rare. In most cases, any signif-
icant change in data would result in an immediate investigation of the situation and so
the potential anomaly event would be avoided in the real data. To demonstrate the al-
gorithm, we ran the KS test using o = 0.012, that is the null hypothesis Hj is rejected
if p < 0.012. Normally, @ = 0.01 would be the first choice for anomaly detection
through hypothesis tests [5i17], however with our data set, at & = 0.01 no events were
identified. The value we’ve chosen, o = 0.012 allow us to demonstrate the flexibility
of the method. The resulting events detected by the KS test are plotted as red dots in
Fig.[5labove the likelihood values.
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Fig. 5. Results of anomaly detection for single gases: (a) CO2, (b) CO, (c) O2, and (d) CH4. For
each plot, the bottom curve shows the data collected from the gas sensor, the top curve shows the
log likelihood found given the data, and the dots at the top show the anomalies as determined by
the algorithm.

Figure Bla) shows there are three distinctive candidate anomaly events in the CO5
data for this time period. Note the second anomaly identified by the system around July
23rd. This corresponds to a sudden jump in gas concentration during an interval where
the gas concentration is decreasing. This highlights the advantage of using a system
that has learnt from past events. This type of anomaly cannot be detected with a flat
baseline benchmark, as at this particular time the gas concentration is lower than the
two nearby peaks. Another interesting feature is that the large drop in gas concentration
around July 21st was not identified as an anomaly, while a threshold system may do
otherwise. Figure [I] showed that a similar event happened two weeks earlier around
July 7th. However, the peak in gas concentration just before this dip was identified as
an anomaly as this was an unusual event in the history of the data set.

Results of anomaly detections in CO, Oy and CHy in Fig. B(b)—(d) show similar
anomalous and normal events as those of COy results. Of particular interest is the last
anomaly identified in the CO data, since at the scale presented, it is difficult to see
why this particular region was identified as an anomaly with such a low log likelihood.
However, upon closer inspection, we found that this is caused by a difference of 1.7
ppm between two consecutive data points. That is, in 30 seconds, the CO concentration
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Fig. 6. Results of anomaly detection for the joint event of the gases, by using KS test setting (a)
a = 0.012; (b) a =~ 0.011. The top curves show the log likelihood and the dots above show the
anomalies determined by the algorithm.

jumped by 1.7 ppm, while the average difference is 0.035 ppm. This is roughly a 5000%
increase in growth rate of CO, which is clearly anomalous.

For investigating joint events, we use the network structure shown in Fig. Blwith A
as the data from CO», B as data from CO and C as the data from O,. Figure[6la) shows
the inference results for the joint event of CO2-CO-Os using this network. We used a
history of 5 data points, that is, m = 5 in Fig.[3l We have conducted experiments with
different m values from m = 2 to m = d = 20, finding that the inference results do
not vary much. The anomalies were again identified by employing the KS test using
extreme value distribution with oo = 0.012.
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The results show many interesting features, which we list below in order of dates:

1. 14th July: No joint event was detected on this date, while Fig. 5(b) showed one
event identified in the CO data on this date. Thus, while the jump in CO concen-
tration at this time would be enough to trigger an alarm for the single gas system,
it was not significant enough within the context of the combined gases. This is an
example of an “explained” event.

2. 18th July: Three distinctive joint events were identified around this date. However,
Fig.[8l(a)-(c) showed that no anomalies were detected in the CO5 and O, data, and
only one event was identified in the CO data. The second and third events would
exemplify as “implicit” events.

3. 21st July: Four events closely following one another were identified around this
date. In the individual gases, only one event is identified in each gas.

4. 22nd July: The first event is similar to that of the situation on 18th July, where only
CO data were anomalous. The second event is where CO concentration dropped,
CO; increased, both causing an anomaly (while at the same time O dropped slightly
but not enough to cause an anomaly). This is an example of “explained” event.

5. 24th July: This is an example of the “group” event where all gases had an anomaly
detected and the joint event was observed as well.

We noted previously that there are no anomalies of real concern in this data set. To
demonstrate the flexibility of the method, we set « for the KS test at 0.012, which is
a large value for anomaly detection in this context. In [17] for example, the authors
needed to set « = 0.00001 to decrease the false alarm rate. Figure [6(b) shows the
anomalies found using o ~ 0.011 in order to demonstrate this value can be adjusted by
operators at a mine site to identify anomalies specific to a mine.

The results shown above are that of “joint temporal anomaly” detection as discussed
in Sec. in which where the different gas sensor data are from the same location.
It is more important for a sensor network to detect anomalies on a network level, such
as the problem described in Sec.[3.3l Unfortunately, we do not have data taken at the
neighbouring sensor nodes. However, in practice, the two spatiotemporal problems are
almost identical. That is, the data from CO5 can be from location 1, while data from CO
and O are from location 2. Then, the learning, inference and likelihood calculation are
exactly the same. Therefore, the method we presented can be easily ported to groups of
sensor nodes at different locations.

6 Conclusion and Future Work

In this paper, we used a combination of dimensionality analysis and a Bayesian Net-
work to learn models for gas data from underground coal mine’s sensor networks. We
identified and defined new types of events for a sensor network. We showed that the
anomalies in the data can be identified through inference of the Bayesian Network.
Further, we showed that our model is able to identify events in a combination of sensor
data that cannot be identified through simple aggregation. For example, it was demon-
strated that anomalous events in individual gas data might be explained if considered
jointly with the changes in other gases. Vice versa, a network-wide spatiotemporal
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anomaly may be detected even if individual sensor readings were within their thresh-
olds. The application of this approach leads to a reduction in the number of false alarms
without compromising the safety of monitored mines.

Let us briefly outline possible spatiotemporal extensions of the approach. First of all,
a Bayesian Network corresponding to a physical location (for example, shown in Fig.[3]
with three subnets A, B, C') can be extended with extra subnets for each new sensor at
the same physical location, e.g. D and E. In this case, dependencies between existing
and new subnets can be revealed by methods such as transfer entropy.

Transfer entropy [18]] identifies a possible relationship between time series, say A
and D, denoted T'4_, p, by estimating the amount of information that a source A; pro-
vides about the next state of a destination Dy, that was not contained in the k past
states of the destination D;_, . .., D;. In other words, transfer entropy provides a mea-
sure of the predictive influence of one element over another — hence, it may help in
finding dependencies between sensor data. The active information storage, a measure
of the amount of information in the past of a processes that is used in determining its
next state [19] may be used in addition to transfer entropy.

Secondly, a Bayesian Network can include subnets corresponding to different physi-
cal locations, for example, A®") and B() for location 1, and B(?) and C'® for location
2, where A, B, C are different gases. In such a case, there may be a temporal de-
pendency between A and B relevant to location 1, a temporal dependency between B
and C relevant to location 2, and a spatial dependency between B(") and B(). Our
approach easily handles situations like this, provided that spatial and temporal depen-
dencies are identified by methods such as transfer entropy. The challenge, however, is in
preventing long chains of dependencies spanning the whole sensor network. To address
this challenge, an information threshold 7" can be used to distinguish between differ-
ent transfer entropies. For example, transfer entropy Tz _, g2y > T would indicate
a need to include spatial dependency between B M) and B (2), while To2) o) < T
would indicate that there is no need to include a dependency between C'(?) and C'®) —
thus, breaking a potential chain.

Constructing Bayesian Networks that correspond to dominant information flows in
a sensor network is a subject of future research.
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A Dimensionality Analysis

Grassberger and Procaccia [20] showed that the correlation integral of a time series,
Cy(r) can be estimated as:

CalN, 1) = 53 0 — [lyi — y;51). )
N_1N

<.
Il
—_

Here @ is the Heaviside function (equal to O for negative arguments and 1 otherwise).
The vectors y; and y; contain elements of the observed time series {x;} with the dy-
namical information in one-dimensional data converted or reconstructed to spatial in-
formation in the d-dimensional embedding space y [21]] as presented in Equation2l The
norm ||y; — y;|| is the distance between the vectors in the d-dimensional space, e.g.,
the maximum norm [22]:

d—1
lyi —y;ll = gljéi(ifwr — Tjyr) (8)

Put simply, Cy(r) computes the fraction of pairs of vectors in the d-dimensional
embedding space that are separated by a distance less than or equal to r. In order to
eliminate auto-correlation effects, the vectors in Equation[7] should be chosen to satisfy
|i — 4] > L, for some positive L, and at the very least i = j [23]].

The correlation dimension v is found by:

v = lim lim 7111 CallN, )
r—0 N—O0 ln T

9)

That is, within certain ranges of r and d, the correlation integral Cy(r) may be propor-
tional to some power of r, Cy(r) ~ r¥ [20]. If the dynamical process is unfolded by
choosing a sufficiently large d > d,, a typical slope of the plot In Cy(r) versus Inr
becomes independent of d. Thus the common numerical practice of finding the embed-
ding dimension d of the data set is to compute the slope from a linear region of the
Cy(N,r) plot. For d < |v], where |v] denotes the largest integer less than or equal to
v, the slope is equal to d. For d > |v], the slop saturates at a constant value which is
usually taken to be the estimated value of v [24].

The data is from telemetric sensors, the time difference between two data point is 30
seconds, thus between 3rd July 0100 and 25th July 0556, we have 68194 data samples.
To find the embedding dimensions, we divide the data into 1 day periods, this gives
us 2880 data points per period. Kugiumtzis et al.[25] showed that this is a reasonable
number for calculating embedding dimensions. We found the embedding dimension to
be d = 20.
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