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Abstract. We quantify the local information dynamics at each spa-
tiotemporal point in a complex system in terms of each element of compu-
tation: information storage, transfer and modification. Our formulation
demonstrates that information modification (or non-trivial information
processing) events can be locally identified where “the whole is greater
than the sum of the parts”. We apply these measures to cellular au-
tomata, providing the first quantitative evidence that collisions between
particles therein are the dominant information modification events.

1 Introduction

Information-theoretic measures are increasingly being used to capture dynam-
ics and to drive evolution in artificial life. Examples here include the use of a
memory-like measure in [1], and information transfer-like measures in [2] and
[3]. Such work appears disjointed however in that each example uses a differ-
ent single measure of fitness. We observe that these single information-theoretic
measures of fitness are often related to sub-functions or elements of computa-
tion. Interestingly, emergent complex behavior has often been described from
the perspective of computation within the given system [4], and complex be-
havior is postulated to be associated with the capability to support universal
computation [5, 6]. Such discussions focus on cellular automata (CAs) as model
systems offering a range of dynamic behavior [4], including producing emergent
structures such as gliders and glider collisions [7]. These discussions typically
surround qualitative observation of the component operations of computation:
information storage, transfer and modification (e.g. [5, 4]).

We suggest that a more intricate approach of quantifying the information
dynamics of each element of computation will provide greater insight into and
greater control over artificial life systems. We will describe how to quantify each
element of computation on a local scale within a given system, showing how
information storage and transfer interact to produce information modification;
neither a single measure or system-wide approach is capable of this. We quan-
tify a sum of the parts of computation, and locally identify information mod-
ification events where the sum is missing information; i.e. where the whole is



greater than the sum of the parts. This phrase is often used to describe emergent
structure in complex systems, e.g. patterns in Belousov-Zhabotinsky media [8],
self-organization in microtubules [9] and collisions in CAs [4].

Our approach will provide insight into the local information dynamics of
complex systems, from the perspective of the individual elements of computation.
Here, we use it to demonstrate that the whole is quantitatively greater than the
sum of the parts at collisions in CAs, and thereby prove the long-held conjecture
that these are the dominant information modification agents therein.

2 Information-theoretical preliminaries

To quantify the elements of computation, we look to information theory (e.g.
see [10]) which has proven to be a useful framework for the design and anal-
ysis of complex self-organized systems, e.g. [1–3]. The fundamental quantity
is the Shannon entropy, which represents the uncertainty associated with any
measurement x of a random variable X (logarithms are in base 2, giving units
in bits): H(X) = −

∑
x p(x) log p(x). The joint entropy of two random vari-

ables X and Y is a generalization to quantify the uncertainty of their joint
distribution: H(X, Y ) = −

∑
x,y p(x, y) log p(x, y). The conditional entropy of

X given Y is the average uncertainty that remains about x when y is known:
H(X|Y ) = −

∑
x,y p(x, y) log p(x|y). The mutual information between X and Y

measures the average reduction in uncertainty about x that results from learning
the value of y, or vice versa: I(X;Y ) = H(X)−H(X|Y ). The conditional mutual
information between X and Y given Z is the mutual information between X
and Y when Z is known: I(X;Y |Z) = H(X|Z)−H(X|Y, Z).

The entropy rate is the limiting value of the conditional entropy of the next
state x of X given knowledge of the previous k − 1 states x(k−1) of X : hµ =
limk→∞H

[
x|x(k−1)

]
= limk→∞ hµ(k). Finally, the excess entropy quantifies the

total amount of structure or memory in a system, and is computed in terms of
the slowness of the approach of the entropy rate estimates to their limiting value
(see [11]). For our purposes, it is best formulated as the mutual information
between the semi-infinite past and semi-infinite future of the system:

E = lim
k→∞

I
[
x(k);x(k+)

]
, (1)

where x(k+) refers to the next k states. This interpretation is known as the
predictive information [12], as it highlights that the excess entropy captures the
information in a system’s past which is relevant to predicting its future.

3 Introduction to Cellular Automata

Cellular automata (CA) are discrete dynamical systems consisting of an array
of cells which each synchronously update their state as a function of the states
of a fixed number of spatially neighboring cells using a uniform rule. While the



behavior of each cell is simple, their (non-linear) interactions can lead to quite
intricate global behavior. As such, CAs have become the classical example of
complex behavior, and been used to model a wide variety of real world phenom-
ena (see [4]). Elementary CAs, or ECAs, are a simple variety of 1D CAs using
binary states, deterministic rules and one neighbor on either side (i.e. cell range
r = 1). An example evolution of an ECA may be seen in Fig. 1a. For more
complete definitions, including that of the Wolfram rule number convention for
describing update rules (used here), see [13].

An important outcome of Wolfram’s well-known attempt to classify the
asymptotic behavior of CA rules into four classes [6, 13] was a focus on emer-
gent structure: particles, gliders and domains. A domain is a set of background
configurations in a CA, any of which will update to another configuration in
the set in the absence of any disturbance. A domain may be regular, where the
configurations repeat periodically, or is otherwise known as irregular. Domains
are formally defined within the framework of computational mechanics as spatial
process languages in the CA [14]. Particles are considered to be dynamic elements
of coherent spatiotemporal structure; gliders are regular particles, blinkers are
stationary gliders. Formally, particles are defined by computational mechanics as
a boundary between two domains [14]; they can be termed domain walls, though
this is typically used with reference to irregular domains. Several techniques exist
to filter particles from background domains (e.g. [15, 16]).

4 Computation in Cellular Automata

Computation in CAs has been a popular topic for study, with a major focus in
observing or constructing (Turing) universal computation in certain CAs (see
[4–6]). This capability has been proven for several CA rules (e.g. the Game of
Life [7]), through the design or identification of entities which provide the three
primitive functions of universal computation: information storage, transmission
and modification. Typically such analyses focus on blinkers as the basis of in-
formation storage, particles as the basis of information transfer, and collisions
between these structures as information modification (see [5, 4]).

However, the focus on universal computational ability has been criticized as
drawing away from the ability to identify “generic computational properties”
in these and other CAs [14]. Related criticisms target attempts to classify CA
rules in terms of generic behavior or “bulk statistical properties”, suggesting
that the wide range of dynamics taking place in different areas of the CA make
this problematic [14, 4]. With respect to computation, it would be too simplistic
to say a CA was either computing or not computing. Alternatively, these studies
suggest that analyzing the rich space-time dynamics within the CA is a more
appropriate focus, since the CA may be undertaking different parts of a complex
computation at different times or spatial points. As such, these and other stud-
ies have analyzed the local dynamics of intrinsic or other specific computation,
while continuing the focus on particles facilitating the transfer of information
and collisions facilitating information modification or processing. Noteworthy



examples include: applying filters from the domain of computational mechanics
(using regular language parsers in [14] and local statistical complexity in [15]);
analysis using such filters on CA rules selected via evolutionary computation
to perform tasks including classification [17]; and deep investigations of particle
properties and their interactions [17, 18].

Despite this surrounding interest, no complete local quantification of the
individual elements of computation exists. In the subsequent sections, we outline
how the individual elements of computation can be locally quantified within the
spatiotemporal structure of a CA. In particular, we describe how information
storage and information transfer interact to give rise to information modification
events, being where the whole is greater than the sum of the parts.

5 Information Storage

Although discussion of information storage, or memory, in CAs has often focused
on periodic structures, it does not necessarily entail periodicity. Instead, the
excess entropy (1) encompasses all types of structure and memory by capturing
correlations across all time lengths. In examining local information dynamics,
we are particularly interested in how much of the stored information is actually
in use at every local point in time and space.

The excess entropy can be massaged into a spatiotemporally local measure
(i.e. the amount of information stored by a particular cell at a particular point in
time) by noting that it is actually the expectation value of a local excess entropy
at every time step [19].3 The local excess entropy is then the mutual information
between the semi-infinite past and future for the given cell at the given time
step. It quantifies the total stored information that will be used at some point
in the future of the state process of that cell; possibly but not necessarily at the
next time step n + 1. To reveal the amount of memory actually in use at the
next time step, we derive local active information storage a(i, n+1) as the local
mutual information between the semi-infinite past x

(k)
i,n (as k →∞) and the next

state xi,n+1 of a given cell i at the given time step n + 1:

a(i, n + 1) = lim
k→∞

log
p(x(k)

i,n , xi,n+1)

p(x(k)
i,n)p(xi,n+1)

. (2)

It is not feasible to compute a(i, n) in the limit k → ∞; instead we com-
pute a(i, n, k) with finite k. Importantly, a(i, n, k) may be positive or negative,
meaning the past history of the cell can either positively inform us or actually
misinform us about it’s next state. An observer is misinformed where, given the
past history, the observed outcome was relatively unlikely.

3 As per Shalizi’s explanation in [19], which was for the light-cone formulation of excess
entropy. A detailed description on why such average measures are the expectation
value of local measures, and why the local measure is simply the log term within the
expectation value, lies in the presentation of local transfer entropy in [16].



Fig. 1. Information Storage. ECA Rule 54: a. (left) Raw CA (time is vertical).
b.,c. Local active information storage a(i, n, k = 16): b. (center) positive values only,
grayscale (30 levels), max. 1.11 bits (black); c. (right) negative values only, grayscale
(30 levels), min. -12.2 bits (black). All figures generated using modifications to [20].

In order to evaluate a(i, n, k) (and our later metrics) within sample CA runs,
we estimate the probability distribution functions from CA runs of 10 000 cells
with periodic boundary conditions, initialized from random states, with 600 time
steps retained (after the first 30 time steps were eliminated to allow the CA to
settle). Since the CA is a homogeneous system, the probability functions were
estimated from observations at every spatiotemporal point so as to obtain more
accurate estimates. All results were confirmed by at least 10 runs from different
initial states. We use ECA rule 54 as a running case study: it is complex enough
to contain traveling and stationary gliders, though these are simple enough that
the results are easily understood.

The raw states of a sample run for rule 54 are displayed in Fig. 1a. The
local active information storage a(i, n, k = 16) profile contains both positive
and negative values, plotted separately in Fig. 1b and c. The positive values are
concentrated in the domain areas, as well as in the stationary gliders (known
as α and β [18]), due to strong temporal periodicity in both areas. In fact, the
a(i, n, k) values form spatially and temporally periodic patterns in the domain,
due to the periodicities of the raw states. The negative values are concentrated
in the traveling glider areas (known as γ+ and γ− [18]). When a traveling glider
is encountered at a given cell, the past history of that cell (being part of the
background regular domain) is misinformative about the next state of the cell,
since the domain sequence was more likely to continue than be interrupted. It
is useful that a(i, n, k) can reveal the gliders in this way (similar to existing
filtering methods for CAs [14, 15]), however it is does not tell us the source of
information for the glider: to quantify this, we turn to information transfer.

6 Information Transfer

Schreiber presented transfer entropy as a directional, dynamic measure for in-
formation transfer [21] so as to address deficiencies in the de facto use of mutual



information (as a static, symmetric measure). Transfer entropy is the deviation
from independence (in bits) of the state transition of an information destination
X from the (previous) state of a source Y. It is a conditional mutual information
[22], being the average information in the source yn about the next state of the
destination xn+1 that was not already contained in the destination’s past x

(k)
n

(i.e. I(Yn;Xn+1|X(k)
n )), allowing us to quantify directional flows of information.

In [16], we demonstrated that the transfer entropy is an expectation value of
a local transfer entropy at each observation. We also generalized comments on
the entropy rate in [21] to suggest that the asymptote k → ∞ is most correct
for agents displaying non-Markovian dynamics. For systems such as CAs with
homogeneous spatially-ordered agents, the local apparent transfer entropy to cell
Xi from Xi−j at time n + 1 is:

t(i, j, n + 1) = lim
k→∞

log
p(xi,n+1|x(k)

i,n , xi−j,n)

p(xi,n+1|x(k)
i,n)

, (3)

for transfer from the previous time step only. Again, we define t(i, j, n, k) for finite
k. Transfer t(i, j, n, k) is defined for every spatiotemporal destination (i, n), for
every information channel or direction j where sensible values for CAs are within
the cell range, |j| ≤ r (e.g. j = 1 means transfer across one cell to the right).
Local apparent transfer entropy t(i, j, n, k) may be either positive or negative,
with negative values occurring where (given the destination’s history) the source
is actually misleading about the next state of the destination.

The destination’s own historical values can indirectly influence it via the
source or other neighbors and be mistaken as an independent flow from the
source [16]. In the context of computation, this influence is recognizable as the
active information storage. The active information storage a(i, n + 1) is elimi-
nated from the transfer entropy measurement by conditioning on the destination’s
history x

(k)
i,n . Yet any self-influence transmitted prior to these k values will not be

eliminated, which is why we suggest taking the limit k →∞ to be most correct.
We applied the local transfer entropy metric to several important ECA rules

in [16]. Fig. 2 displays application of the local apparent transfer entropies to rule
54, demonstrating that the metric successfully highlights traveling gliders with
large positive transfer against background domains (it also highlights domain
walls where they exist). Importantly, the metric finds negative transfer for glid-
ers moving orthogonal to the direction of measurement, because the source (as
part of the domain) is misinformative about the next state of the destination.
Also, there is a small non-zero information transfer in background domains,
effectively indicating the absence of gliders; this is particularly strong in the
wake of real gliders, where secondary gliders often follow. The measure provided
the first quantitative evidence for the long-held conjecture that particles are the
dominant information transfer agents in CAs. This highlighting was similar to
other methods of filtering in CAs (e.g. [15, 14]), but subtly allowed comparison
between and within gliders of the amount and (channel or) direction of infor-
mation transfered at each point, and revealed the leading edges of gliders as the



Fig. 2. Information Transfer. ECA Rule 54: a. (left) Raw CA. b.,c. Local apparent
transfer entropy t(i, j = −1, n, k = 16) (j = −1 means transfer one cell to the left):
b. (center) positive values only, grayscale (16 levels), max. 7.92 bits (black); c. (right)
negative values only, grayscale (16 levels), min. -4.21 bits (black).

major information transfer zones. At least a minimum k was required to achieve
reasonable estimates of the metric (e.g. of the order of the period of a regu-
lar periodic domain); without this, particles were not highlighted. Finally, note
that this metric cannot quantitatively distinguish gliders from their collisions:
for this, we look to an information modification metric.

7 Information Modification

Information modification has been described as interactions between stored and
transmitted information that result in a modification of one or the other [5],
and generally interpreted to mean interactions or collisions of particles. As an
information processing event, the important role of collisions in determining the
dynamics of the system is widely acknowledged [18]. For a regular particle or
glider, a local modification is simply an alteration to the predictable periodic
pattern of the glider’s dynamics, where an observer would be surprised or mis-
informed about the next state of the glider without having taken account of the
entity about to perturb it. Recall that local apparent transfer entropy t(i, j, n)
and local active information storage a(i, n) were negative where the respective
information sources were misinformative about the next state of the information
destination. This occurred for a(i, n) at unperturbed gliders, and for t(i, j, n) at
gliders traveling in the orthogonal direction to the measurement. However, we
expect that the t(i, j, n) in the direction of motion of the glider will be more
informative than the misinformation conveyed from the other sources.

Where a glider is perturbed by an interaction with another glider, we cannot
expect t(i, j, n) in the macroscopic direction of the first glider to remain informa-
tive about the evolution of that glider at the collision point. Nor can we expect
this from the incoming t(i, j, n) for the incident glider. As such, we hypothesize
that at the spatiotemporal location of a local information modification event or
collision, the total information from the information storage and information



transfer, where each source is observed separately, will misinform an observer.
We label this total as the local separable information, s(i, n):

s(i, n) = a(i, n) +
+r∑

j=−r,j 6=0

t(i, j, n), (4)

with s(i, n, k) representing the approximation for finite k. Where s(i, n) is posi-
tive or highly separable, separate or independent observations of the sources are
informative overall about the next state of the information destination. This in-
dicates that information storage and transfer are not interacting, and only trivial
information modifications are taking place. Conversely, we expect s(i, n) to be
negative at spatiotemporal points where an information modification event or
collision takes place, with more significant modifications taking larger negative
values. Separate examination of sources fails here because the information stor-
age and transfer are interacting, i.e. non-trivial information modification takes
place. This formulation of non-trivial information modification quantifies the de-
scription of emergence in complex systems as where “the whole is greater than
the sum of it’s parts”. While we quantify the sum of the parts in s(i, n), there
is no quantity representing the “whole” as such, simply an indication that the
whole is greater where all information sources must be examined together in
order to receive positive information on the next state of the given entity.

Fig. 3 displays application of s(i, n, k) to ECA rule 54. Positive values of
s(i, n, k) (not plotted) are concentrated in the domain regions and at the sta-
tionary gliders (α and β): as expected, these regions are undertaking trivial
computations only. The dominant negative values of s(i, n, k) are concentrated
around the areas of collisions between the gliders, including those between trav-
eling gliders only (marked by “A”) and between the traveling gliders and blinkers
(marked by “B” and “C”). Considering the collision “A” (γ++γ− → β [18]), the
marked information modification event is one time step below where one may
naively define it. Our metric correctly marks the information modification event
however, being where prediction requires the sources to be considered together.
For the other collisions “B” and “C” also, the spatiotemporal location of the pri-
mary information modification(s) appears to be delayed from a naively defined
collision point; this indicates a time-lag associated with processing the informa-
tion. Smaller negative values are also associated with the gliders (too small to
appear in Fig. 3b), which was unexpected. These weak information modifica-
tions appear to indicate the absence of a collision (i.e. the absence of an incident
glider) and in some sense are a computation that the glider will continue. These
computations are more significant in the wake of real collisions (indeed the sec-
ondary collision points for types “B” and “C” are higher in magnitude than the
earlier collision points), since they have a larger influence on the surrounding
dynamics at those points. This finding is analogous to that of small values of
transfer entropy in domains indicating the absence of gliders, which were also
more significant in the wake of real gliders [16]. This is the first known metric
which brings together information storage and transfer to identify information
modification, and it has provided the first quantitative evidence that collisions



Fig. 3. Information Modification. ECA Rule 54: a. (left) Raw CA. b. (center) Local
separable information s(i, n, k = 16), negative values only plotted, grayscale (30 levels),
min -5.23 bits (black). c. (right) Locations of negative values of s(i, n, k = 16) (larger
than weak values along the gliders) marked with black circles against t(i, j, n, k = 16)
summed over j = [−1, 1]; “A”, “B” and “C” mark collision types discussed in the text.

in CAs are the dominant information modification events therein. It is also the
first suite of filters able to distinguish between particles and particle collisions.

8 Conclusion

We have discussed appropriate local metrics for information storage and transfer,
and demonstrated how these quantities interact to produce information modi-
fication events where the “whole is greater than the sum of the parts”. These
metrics form a powerful framework for quantifying the information dynamics of
complex systems. Here, the framework has been applied to CAs, providing the
first evidence for the long-held conjecture that collisions therein are the dominant
information modification events.

We aim to provide a deeper investigation of this topic in a forthcoming analy-
sis, reporting results we have obtained from application of the presented methods
to other CA rules (complex, chaotic and those with domain walls) which cor-
roborate and extend those reported here. We believe these three elements of
computation identify a set of axes of complexity to characterize complex sys-
tems. Within this multi-dimensional space, a system such as a CA may appear
complex in one dimension (e.g. information storage) without necessarily appear-
ing so in the other dimensions. Finally, we shall explore the generality afforded
by the information-theoretic basis of this framework. Application to higher di-
mensional CAs or other discrete dynamical systems is straightforward, and we
expect application to artificial life systems to provide greater insight into and
control over such systems.
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Wave propagation in subexcitable media with periodically modulated excitability.
Phys. Rev. Lett. 86(8) (2001) 1646

9. Brown, J.A., Tuszynski, J.A.: A review of the ferroelectric model of microtubules.
Ferroelectrics 220 (1999) 141–156

10. MacKay, D.J.: Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press, Cambridge (2003)

11. Crutchfield, J.P., Feldman, D.P.: Regularities unseen, randomness observed: Levels
of entropy convergence. Chaos 13(1) (2003) 25–54

12. Bialek, W., Nemenman, I., Tishby, N.: Complexity through nonextensivity. Physica
(Amsterdam) 302A(1-4) (2001) 89–99

13. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign, IL, USA (2002)
14. Hanson, J.E., Crutchfield, J.P.: The attractor-basin portait of a cellular automaton.

J. Stat. Phys. 66 (1992) 1415–1462
15. Shalizi, C.R., Haslinger, R., Rouquier, J.B., Klinkner, K.L., Moore, C.: Automatic

filters for the detection of coherent structure in spatiotemporal systems. Phys.
Rev. E 73(3) (2006) 036104

16. Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Local information transfer as a spa-
tiotemporal filter for complex systems. Unpublished (2007)

17. Mitchell, M., Crutchfield, J.P., Hraber, P.T.: Evolving cellular automata to perform
computations: Mechanisms and impediments. Physica (Amsterdam) 75D (1994)
361–391

18. Hordijk, W., Shalizi, C.R., Crutchfield, J.P.: Upper bound on the products of
particle interactions in cellular automata. Physica (Amsterdam) 154D(3-4) (2001)
240–258

19. Shalizi, C.R.: Causal Architecture, Complexity and Self-Organization in Time
Series and Cellular Automata. PhD thesis, University of Wisconsin-Madison (2001)
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