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Abstract. We introduce a concise approach to teamwork evaluation on multi-
ple levels — dealing with agent’s behaviour spread and multi-agent coordination
potential, and abstracting away the team decision process. The presented quanti-
tative information-theoretic methods measure behavioural and epistemic entropy,
and detect phase transitions — the edge of chaos — in team performance. The
techniques clearly identify under-performing states, where a change in tactics
may be warranted. This approach is a step towards a unified quantitative frame-
work on behavioural and belief dynamics in complex multi-agent systems.

1 Introduction
The emergence of system-level behaviour out of agent-level interactions is a distin-
guishing feature of complex multi-agent systems — making them very different from
other complicated multi-component systems, where multiple links among the compo-
nents may achieve efficient interaction and control with fairly predictable and often pre-
optimised properties. In robotic soccer, the emergent behaviour is dependent on agents
architecture and skills, the employed communication policy, the opponent tactics and
strategies, and not least on various unknown factors present in the environment. In short,
it appears to be extremely difficult to rigorously investigate and evaluate multi-agent
teamwork, coordination, and overall performance. One possible avenue for measuring
team performance is to use information-theoretic methods. In particular, we suggest to
characterise dynamics of multi-agent teams in terms of generic information-theoretic
properties, such as entropy, and correlate it with the overall team performance metrics.

Information-theoretic methods are applied in many areas exhibiting multi-agent in-
teractions. For instance, Cellular Automata (CA) are a well-studied class of discrete
dynamical systems, where information-theoretic measures of complexity (such as Shan-
non entropy of certain frequency distributions) were effectively used to categorise and
classify distinct emergent configurations and phase transitions between them [17, 6].
Langton has shown in his seminal work [6] that an increase in the mutual information
(defined as a function of individual cell entropies for a particular value of the λ param-
eter) is an indication of a phase transition from “order” to “chaos”. Wuensche [17] has
used a similar quantitative metric — variance of input-entropy over time — in classify-
ing rule-space of 1-dimensional CA into ordered, complex and chaotic cases, related to
Wolframs’s qualitative classes of CA behaviour [16].

It could be argued that the complexity of emergent behaviour increases with a) the
complexity of the agents, b) the diversity of the agents, achieved either by original
design or by a learning process, and c) the variety of the communication connections



among agents. In the context of RoboCup, the behavioural diversity (the second com-
ponent of our argument) was extensively analysed by Balch [1], who suggested a new
metric — hierarchic social entropy — to characterise the heterogeneity of agents be-
haviours across a team. Robots are said to be absolutely behaviorally equivalent if and
only if they select the same behaviour in every perceptual state. Balch introduced the
concept of hierarchical clustering as “a means of dividing a society into subsets of be-
haviorally equivalent agents at a particular taxonomic level” [1], and developed a mea-
sure of behavioral difference, enabling agent categorisation and subsequent calculation
of the hierarchic social entropy.

We will initially focus on the first component — the diversity of a single agent’s
behaviour in different situations. In other words, we analyse a relation between entropy
of an individual agent’s behaviour and the team performance. Our conjecture, supported
by experimental results, is that each agent is able to express more versatile behaviour
when faced with easier opposition. Conversely, when opposing stronger teams, each
agent may not be able to realise its behaviour in full — leading to lower behavioural
entropy. Intuitively, these two extremes resemble the “ordered” and “chaotic” states:
when the opponent is too strong then the agent’s behaviour is limited to “fixed point”
or “limit cycle” attractors, while weak opponents do not put significant constraints al-
lowing the agent to achieve “strange” attractors symptomatic of chaotic behaviour. If
this conjecture is true, then “complex” behaviour lies at the edge of chaos, and the be-
havioural entropy would point to a phase transition in this region. Put simply, when
playing opponents of similar strength the agents exhibit most interesting “complex”
behaviour, but at the same time it becomes much harder to evaluate the performance.

In the second part of the paper we study the third component — the complexity of
the inter-agent communications, related to potential of multi-agent coordination. The
analysis is focused on entropy of joint beliefs — the epistemic entropy — and com-
plements the results reported earlier [10]. The epistemic entropy approach uses the
information entropy as a precise measure of the degree of randomness in the agents’
joint beliefs. Intuitively, the system with near-zero epistemic entropy (almost no “mis-
understanding” in joint beliefs) has a higher multi-agent coordination potential than the
system with near-maximal entropy (joint beliefs are almost random). In addition, we
identified and considered two coupled levels of dynamic activity (following the Kugler-
Turvey model) — showing that self-organisation and the loss of epistemic entropy occur
at the macro (agent coordination) level, while the system dynamics on the micro level
(within the communication space) generates increasing disorder. The entropy within
the communication space is also traced against team performance metrics, showing that
phase transitions occur in coordination-communication dynamics as well.

In summary, the developed metrics allow us to evaluate team performance on mul-
tiple levels: from individual “behavioural spread” to multi-agent coordination potential.

2 Input-Entropy and the Edge of Chaos
2.1 Mutual Information and Phase Transitions

The information-theoretic analysis of phase transitions is typically based on the notions
of entropy and mutual information. The entropy is a precise measure of the amount of
freedom of choice in the object — an object with many possible states has high entropy.



Formally, the entropy of a probability distribution P = {p1; p2; . . . ; pm} is defined by

H(P ) =
m∑

i=1

pi ∗ log (1/pi) (1)

The ratio of the actual to the maximum entropy is called the relative entropy of the
source [14]. Langton [6] investigated the mutual information of CA, defined as a func-
tion of the individual cell entropies, H(A) and H(B), and the entropy of the two cells
considered as a joint process, H(A, B), that is: I(A; B) = H(A)+H(B)−H(A, B),
and related it to phase transitions. The average mutual information I(A; B) has a dis-
tinct peak at the transition point: “the jump . . . clearly indicates the onset of the chaotic
regime, and the decaying tail indicates the approach to effectively random dynamics”.

Peaks or discontinuities are symptomatic of phase transitions in complex multi-
agent systems. For instance, Miramontes [7] analysed artificial ant societies, composed
of interacting agents that can generate regular cycles in the activity of the colony, and
pointed out that the information capacity of the colony is maximal at certain nest densi-
ties — in the neighbourhood of a chaos-order phase transition. In other words, the max-
imum in the average information capacity of the colony, given by the classical Shannon
entropy, corresponds to “the density at which the nest reaches its highest diversity of
activity states”. When the nest density is increased beyond some critical density and the
phase transition has occurred, “the number of ants becomes sufficiently large to facil-
itate and support the existence of long-range correlated behaviour that manifests itself
as coherent collective oscillations in the number active ants” [7].

Another way to identify phase transitions is to use a variance of input-entropy.
Wuensche [17] characterised rule-spaces of 1-dimensional cellular automata with the
Shannon entropy of rules’ frequency distribution. More precisely, given a rule-table
(the rules that define a CA), the input-entropy at time step t is defined as

St = −

m∑

i=1

Qt
i

n
log

Qt
i

n
,

where m is the number of rules, n is the number of cells (system size), and Qt
i is the

look-up frequency of rule i at time t — the number of times this rule was used at t
across the CA. The input-entropy settles to fairly low values for ordered dynamics, but
fluctuates irregularly within a narrow high band for chaotic dynamics. For the complex
CA, order and chaos may predominate at different times causing the entropy to vary. A
measure of the variability of the input-entropy curve is its variance or standard devia-
tion, calculated over time. Wuensche has convincingly demonstrated that only complex
dynamics exhibits high variance of input-entropy, leading to automatic classification of
the rule-space. Importantly, the peak of input-entropy variance points to a phase transi-
tion again, indicating the edge of chaos (complexity).

2.2 Measuring Agent’s Behavioural Spread
Having identified the appropriate metrics and the forces shaping the space-time dynam-
ics, we now proceed to the analysis of the heterogeneity of a single agent’s behaviour
in different situations. As mentioned earlier, we shall explore a relation between the en-
tropy of an agent’s behaviour and the team performance. Our intention is to characterise
an agent’s behaviour without a loss of generality, and thus we would prefer to abstract



away a possibly convoluted decision-making mechanism. In other words, we intend to
consider only the action rules (condition-action pairs) that the agent triggered at a given
time step. In other words, we may use (and did use) the agents designed in accordance
with the Deep Behaviour Projection (DBP) agent architecture [10] or another (multi-
layered) architecture, but without taking into account the depth of the agent behaviour
in terms of multiple decision-making layers. This allows us to apply the developed tech-
niques to any rule-based approach capable of identifying action rules taken by an agent
at a given time step. To perform our analysis we employ the input-entropy of a partic-
ular frequency distribution Bk

i , where k is a game index, and i is an action rule index:
1 ≤ i ≤ m, where m is the number of rules. Analogously to the CA analysis conducted
by Wuensche [17], we define the behavioural input-entropy as

Ek = −

m∑

i=1

Bk
i

n
log

Bk
i

n
,

where n is the system size (the total number of rule invocations), and Bk
i is the look-up

frequency of rule i during the game k. The difference between S t and Ek is that the
former is calculated for each temporal state of the CA in point, while the latter is deter-
mined for each game in a multi-game experiment. Both metrics, however, characterise
the distribution of rules — either across the CA lattice or during the game.

We intend to show that agents express more diverse behaviour when faced with eas-
ier opposition. Formally, the average behavioural input-entropy, calculated for K games
against the opponent j: Ej =

∑K

k=1

Ek

K
, should in general increase with the average

score difference gj , defined as the average difference between the agent’s team score
and the opponent team score. Importantly, a standard deviation σj of the behavioural
entropy Ek calculated across all games against the opponent j, will be shown to be an
indicator of a phase transition, reaching a maximum at some gj close to zero.

3 Experiments: Behavioural Entropy and Phase Transitions
We have carried out our experiments in the RoboCup Simulation League [4], where the
platform simulates essentially a pseudo real-time environment, providing each agent
with fragmented, localised and imprecise (noisy and latent) information about the en-
vironment. Each experiment included 30 games between the test team and a particular
opponent, producing a value for the behavioural entropy Ek, 1 ≤ k ≤ 30, and a score
difference gj (a negative score difference represents losing the game). Figure 1 shows
input-entropy trajectories for 3 experiments, ranging from a much stronger opponent
(the average score difference g = −6.33), to an opponent of about the same strength
as the test team (g = −0.07), to a much weaker opponent (g = +10.17). It is easy to
observe that not only the the behavioural entropy Ek of a test agent (the left mid-fielder
of the test team, in this case) decreases on average with the strength of the opponent,
but also that Ek fluctuates in a much wider band in the medium case.

To support this claim and to verify our conjecture that there is a phase transition,
however, we conducted more experiments — against 10 opponents, collecting the statis-
tics for 6 agents (wing- and centre-forwards, wing- and centre-midfielders, and wing-
and centre-defenders). Figure 2 shows the average behavioural entropy (after K = 30
games), plotted for these 6 agents and for each of the opponents.



1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

0 5 10 15 20 25 30

Ek

Game index k

’Weak’

?

? ?

?
?

?

?

?

?
?

?
?

?
? ? ?

?

?
?

?

?

?

?

?

?

?

?
?

?

?

?

’Medium’

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

’Strong’

r

r

r

r

r
r

r

r

r
r

r

r

r r

r

r

r

r

r

r

r r

r

r

r

r

r

r

r

r

r

Fig. 1. Behavioural entropy Ek.
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Fig. 2. Average behavioural entropy Ej . Two top plots represent forwards, two middle plots —
midfielders, and two bottom plots — defenders.

The tendency of the behavioural entropy to increase when faced with a weaker
opposition is obvious in most field positions, and especially in the midfield. There is
also an evident discontinuity exactly in the range we expected — when competing with
the opponents of similar strength (−0.87 ≤ gj ≤ 0.83). This discontinuity is indicative
of a phase transition. To confirm this, we observe the trajectory of standard deviation σj

of the behavioural entropy Ek, calculated across all games against the opponent j, and
shown in Figure 3. Standard deviation peaks in the expected region for all positions, and
conclusively points to a phase transition. Interestingly, precise locations of peaks differ
within the narrow range (−0.87 ≤ gj ≤ 0.83), indicating that the peak is not a feature
forced by a particular opponent, but rather a “complexity” attribute of the transition.

This entropy-based technique clearly identifies the edge of chaos. This is important
because it helps to answer the question of whether a change in tactics is needed in some
under-performing cases. During the phase transition, the team performance is unstable
and the score difference should not be used as a sole trigger for drastic design changes
or on-line interventions by a coach-agent.
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4 Epistemic Entropy and Multi-Agent Coordination
4.1 Epistemic entropy on macro level
In this section we analyse the complexity of inter-agent communications. As pointed
out in the literature [8, 5], emergent self-organisation or extropy may seem to contradict
the second law of thermodynamics that captures the tendency of systems to disorder.
The “paradox” has been gracefully explained in terms of multiple coupled levels of
dynamic activity (the Kugler-Turvey model [5]) — self-organisation and the loss of en-
tropy occurs at the macro level, while the system dynamics on the micro level generates
increasing disorder. One convincing example is described by Parunak and Brueckner [8]
in context of pheromone-based coordination. Their work defines a way to measure en-
tropy at the macro level (agents’ behaviours lead to orderly spatiotemporal patterns) and
micro level (chaotic diffusion of pheromone molecules). In other words, the micro level
serves as an entropy “sink” — it permits the overall system entropy to increase, while
allowing self-organisation to emerge and manifest itself as coordinated multi-agent ac-
tivity on the macro level. The epistemic entropy presented here is analysed in the terms
of the Kugler-Turvey model [5] as well. We intend to show that the higher team coordi-
nation potential is related to lower entropy of multi-agent joint beliefs (macro level). At
the same time, it is explained by increased entropy on a micro level. This micro level
is the communication space where the inter-agent messages are exchanged (the process
that is similar to diffusion of the pheromone molecules).

For convenience, we reproduce here definitions and two characterisations presented
in [10], and follow with extended results. Let us consider a simple protocol P1 allowing
an agent to communicate data about only one agent precisely. In other words, each agent
is able to encode either the data about itself or about the other agent. Without loss of
generality, we may assume that the protocol P1 has enough symbols to encode the data
about agents (objects) a1, . . . , an in such a way that they are explicitly distinguishable.

A binary relation S(ai, aj) represents that the agent ai sends a message containing
the object aj . A function C maps an agent name (symbol) to another agent name (sym-
bol), and the abbreviation C(ai) = aj denotes that the content of the message from the
agent ai is the object aj . We intend that C(ai) = aj if and only if S(ai, aj).



Definition 1. A multi-agent agreement L1(n) is called selfish if and only if S(ai, ai)
for all agents ai, 1 ≤ i ≤ n.

A multi-agent agreement L2(n) is called transitively-selfish if and only if S∗(ai, ai)
for all agents ai, 1 ≤ i ≤ n.

Equivalently, C(ai) = ai for all agents ai, 1 ≤ i ≤ n, under the selfish multi-agent
agreement — each agent symbol is a fixed-point of the function C(a). A transitively-
selfish agreement suggests that the agents are more cooperative, and may communicate
the data about some other agent (when available). Notice, however, that given the tran-
sitive closure S∗(ai, ai), everyone is in the “loop”. By definition, a selfish multi-agent
agreement is transitively-selfish. The difference, however, may lie in the presence or
absence of fixed-points C(ai) = ai. The transitively-selfish agreements without fixed-
points, where each agent is cooperative: C(ai) 6= ai, will be of special interest. Non
transitively-selfish agreements are called mixed.

Definition 2. A multi-agent agreement L3(n) among n ≥ 2 agents, where some agents
are selfish and the others are cooperative, is called mixed. There are (αn) agents such
that S(ai, ai), and (1 − α)n agents such that S(ai, aj) where i 6= j.

The α parameter is called the team composition parameter.
The mixed agreement L1

3(n) where all cooperative agents provide information about
the selfish team-mates is called the mixed agreement of the 1st kind.

The mixed agreement L2
3(n) where all cooperative agents are transitively commu-

nicating among themselves is called the mixed agreement of the 2nd kind.

In order to capture the distinction among selfish, transitively-selfish and mixed agree-
ments in a formal information-theoretic setting we shall analyse the joint “output” of
inter-agent communication at the end of each period of team synchronisation [10]. More
precisely, we analyse joint beliefs represented by the sequence Kt of individual beliefs
at time t: K(ai, aj), where 1 ≤ i ≤ n and 1 ≤ j ≤ n; the belief-function K is
defined for each agent pair. In order to estimate how much information is contained
in the whole team after a period of team synchronisation — as the team information
progresses from Kt to Kt′ — we need to answer how much choice would be there if
one were to describe Kt′ . To do so we calculate the relative entropy Hr of Kt′ . The
following representation results for protocol P1 were reported in [10].

Theorem 1. Selfish agreements attain minimal entropy. Transitively-selfish agreements
without fixed-points attain maximal entropy asymptotically when n → ∞.

The first part of the theorem basically states that whenever agents agree to communi-
cate the data about themselves only, they eventually leave nothing to choice, always
maximising their joint beliefs. The intuition behind the second part is that the pair-wise
“ignorance” of agents grows faster than the transitively-selfish agreement can cope with.

The next results for protocol P1 are the extensions produced for mixed agreements.

Theorem 2. Mixed agreements of the 1st kind attain bounded epistemic entropy.
Mixed agreements of the 2nd kind attain bounded epistemic entropy, and attain the

epistemic entropy of mixed agreements of the 1st kind asymptotically when n → ∞.



In other words, the lower limit is not 0, meaning that absolute order is never achievable
regardless of the team composition or the number of agents, while the upper limit is
not 1, so that absolute randomness is avoidable as well. Following [10] and interpreting
the extended results, we would like to point out that the relative epistemic entropy of
joint beliefs in multi-agent teams serves as a generic indicator of the team coordination
potential. In general, the following series is established for the epistemic entropy:

Hr(L1(n)) ≤ Hr(L
2
3(n)) ≤ Hr(L

1
3(n)) ≤ Hr(L2(n)) (2)

while the respective coordination potentials follow the reverse dependency.

4.2 Epistemic entropy on micro level
The epistemic entropy may now be analysed in terms of the Kugler-Turvey model [5].
The higher coordination potential of the team following the selfish agreement with near-
zero epistemic entropy can be explained by an increased entropy on the micro level
— the communication space where the inter-agent messages are exchanged. Clearly,
in the case of the selfish agreement the communication space is quite saturated, and
the entropy on the micro level increases dramatically. On the contrary, the transitively-
selfish agreement may use the communication channel(s) rather sparingly, resulting in a
lesser increase of entropy on the micro level — while attaining near-maximal epistemic
entropy on the macro level (joint multi-agent beliefs are almost random).

A characterisation of the micro level (the entropy “sink”) can be obtained if one es-
timates the “regularity” of the communication space. In order to carry out this analysis
we consider low-bandwidth domains requiring real-time response — in other words,
environments where heavy communication among team agents is impossible. For ex-
ample, we may consider Periodic Team Synchronization (PTS) domains introduced by
Stone and Veloso [15] for pseudo real-time environments. However, our analysis is ap-
plicable to more generic domains as well — what is important is that the communication
channel is limited. More precisely, a multi-agent domain should contain a parameter h
determining how many messages can be received by each agent in a cycle. In particular,
we are interested in capturing situations (communication clashes) where communica-
tion messages exceed “hear capacity” h in a given cycle, and measuring the average
severity, spread and regularity of clashes. Let us introduce the following notation:

θ(a) is a function returning 1 if a boolean expression a is true, and 0 otherwise.
κi,j is a function returning the number of communication messages received from

the team i at cycle j;
δi,j is a boolean function returning true if κi,j > h, and false otherwise;

The average severity of clashes in the team i is given then by

Mi(h) =

∑m

j=1
θ(δi,j) κi,j

m

where m is the number of cycles, while regularity of the series κi,j can be measured
with the auto-correlation function of an integer delay τ :

γi(τ) =

∑m

j=τ+1
(κi,j − κi) (κi,j−τ − κi)∑m

j=τ+1
(κi,j − κi)2

,



where κi is the series average. The auto-correlation function is equivalent to the power
spectrum in terms of identifying regular patterns — a near-zero auto-correlation across
a range of delays would indicate high irregularity, while auto-correlation with values
close to one indicate very high regularity. Some of this regularity is, however, spurious
and is related to the severity of clashes. Therefore, we believe that a better approxima-
tion of the entropy on the micro level (communication space) may be given by the ratio

ξi(τ, h) =
Mi(h)

γi(τ)

This new statistics attempts to capture how much regularity in the series is there per
communication clash, and invert the measure. Our conjecture is that there is a depen-
dency complementary to the dependency 2 over the range of possible values of τ , given
some hear capacity:

ξL2
(τ) ≤ ξL1

3

(τ) ≤ ξL2

3

(τ) ≤ ξL1
(τ) (3)

The higher entropy on the micro level (communication) corresponds to the lower epis-
temic entropy on the macro level (coordination), and in turn to the higher coordination
potential.

5 Experimental Results: Bounded Epistemic Entropy
Importantly, clear boundaries limiting the team coordination potential are related to
particular communication policies. It is, however, not trivial to demonstrate these lim-
its experimentally. First of all, the coordination potential can not be measured directly
— it can only be realised in concrete multi-agent interactions. Moreover, the actual
multi-agent coordination can be comprehensively evaluated only through the overall
team performance over some period of time. Secondly, the coordinated activities corre-
sponding to different communication policies would have to sufficiently differ in order
to generate a pronounced difference in team performance.

In the RoboCup Simulation League, the “hear capacity” h determines how many
messages can be heard by each agent in a cycle — for example, one message per cycle
(h = 1). To measure coordination potential via team performance, we varied commu-
nication policies, while leaving all other factors (agents skills and tactics) unchanged.
This focussed the experiment on the dependency between communication policies (and
therefore, resultant joint beliefs) and the team coordination potential. In addition, we
attempted to engineer, by varying the communication policies, very distinct types of co-
ordinated activities, ranging from very local multi-agent coordination to rather global
(zonal) one. For each type we also calculated the statistics Mi(1) and ξi(3, 1) — in
order to estimate the corresponding entropy on the micro level.

We investigated three communication policies based on the protocol P1. The first
policy (“Press”) modelled the transitively-selfish agreement, with high relative entropy
and very local coordination, enabling a pressing aggressive game. The second policy
(“Zonal”) followed the selfish agreement, with low relative entropy and very global
coordination, enabling a passing non-aggressive game. The third policy (“Mix”) was
aimed at some mixture of local and global coordination, balancing predominantly press-
ing game with some passing chances — truly a mixed agreement with (anticipated)
bounded relative entropy. The results are presented in the Table 1. The “Press” policy



Team Goals Points γ(3) M(1) ξ(3, 1) Team Goals Points γ(3) M(1) ξ(3, 1)

vs “A” vs “B”
Press 31–91 65 0.553 0.067 0.12 Press 105–70 152 0.533 0.070 0.13
Zonal 18–107 50 0.657 0.224 0.34 Zonal 114–53 180 0.641 0.217 0.34
Mix 30–127 63 0.522 0.068 0.13 Mix 118–65 172 0.495 0.071 0.14

Table 1. Results against 2 benchmarks after 100 games for each test.

showed the best performance against the stronger benchmark “A”, while the “Zonal”
policy was the worst. The results against the weaker opponent “B”, on the contrary,
indicate that a team coordinated zonally (across wider spaces) perform better than the
aggressive pressing team. In other words, these two communication policies lead to
sufficiently different coordinated activities (local vs global) and generate a pronounced
difference in team performance. This is important because, as mentioned earlier, we
attempt to trace the effect of coordination potential — a capacity that is measurable
only via a difference in produced results. The “Mix” policy achieved intermediate re-
sults. Importantly, this mixed policy was within the boundaries marked by the first two
variants (and closer to the first one), as suggested by the relative epistemic entropy. As
expected, the entropy ξ(3, 1) on the micro-level supported our hypothesis:

ξPress(3) ≤ ξMix(3) ≤ ξZonal(3) ,

contrasting with the epistemic entropy inequalities, where the “Zonal” policy is close
to the theoretic minimum and the “Press” policy reaches the maximum.

6 Experimental Results: Epistemic Entropy and Phase Transitions
We have also investigated phase transitions in the communication space. This investi-
gation is at preliminary stages, but some promising results were obtained. Again, an
experiment included 30 games between the test team (using the “Mix” policy) and an
opponent from the pool of the same 10 opponents as in the behavioural entropy ex-
periments. Each experiment produced a value for the communication entropy ξk(3),
0 ≤ k ≤ 30, and a score difference gj . The standard deviation σξ

j of the entropy ξk(3),
calculated across all games against the opponent j, is plotted in Figure 4. As expected,
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Fig. 4. Standard deviation of communication entropy.

standard deviation σξ
j peaks in the the narrow range (−0.87 ≤ gj ≤ 0.83), indicating a

phase transition in the communication space, and in the coordination potential as well.



In other words, epistemic entropy, directly related to the entropy ξk(3), also identifies
the edge of chaos. In summary, the results not only illustrate the dependency between
communication policy, the epistemic entropy and the team coordination potential, but
also detect a phase transition in the coordination and communication dynamics.

7 Related Work and Conclusions
We presented a set of quantitative techniques for evaluation of team performance on
multiple levels: from individual behavioural spread to multi-agent coordination poten-
tial. These techniques are based on information-theoretic metrics measuring complexity
in multi-agent systems. In particular, we focussed on identifying the “edge of chaos” in
team performance — leading to discovery of evident phase transitions. Our conjectures
and theoretical results were supported by a number of experiments — over 500 games.

As pointed out by Pynadath and Tambe [11], “despite the significant progress in
multiagent teamwork, existing research does not address the optimality of its prescrip-
tions nor the complexity of the teamwork problem”. The unified framework suggested
by Pynadath and Tambe (COMmunicative Multiagent Team Decision Problem — COM-
MTDP model) is general enough to subsume many existing models of multi-agent sys-
tems, and provides a breakdown of the computational complexity of constructing opti-
mal teams in terms of observability and communication cost. The COM-MTDP model
incorporates the team decision mechanism, and inevitably is rather complex, as almost
any unifying framework. In this paper we attempted to introduce a concise approach
to teamwork evaluation, dealing with behaviour spread and multi-agent coordination
potential, and excluding the team decision process.

The presented analysis targets our overall goal — development of tools for eval-
uation of multi-agent adaptability and coordination in comparative terms, rather than
methods for designing an “ultimate” intelligent and/or adaptive system. In pursuing this
goal, we build up on existing quantitative methods for automated analysis of Simulation
League games (eg., the AGL tool — Analysis of Game Logs [2]). We also hope to com-
plement existing teamwork models and techniques impacting the team performance. A
pioneering system capable of an automated analysis in the context of RoboCup was
the ISAAC system modelling an assistant-coach [12]. ISAAC analyses games off-line
and produces structured suggestions to designers, supported by examples. Another au-
tonomous coach agent is recently described by Riley et.al. [13] — it is not only capable
of extracting models from past games but may also respond to an ongoing game.

Our quantitative analysis complements this line of research by providing methods
and techniques that determine phase transitions in team performance — the edge of
chaos. These techniques isolate the under-performing cases where a change in tactics is
warranted. During the phase transition, the team performance is highly unstable, and the
scope for an on-line coach-agent contribution is limited. The quantitative information-
theoretic methods presented here incorporate both behavioural and epistemic entropy,
and are compatible with the hierarchic social entropy approach developed by Balch [1].
This opens a clear way to a unified quantitative framework on behavioural and belief
dynamics in multi-agent systems. Another interesting possibility is to explore possible
connections between the described techniques and the measures for relevant informa-
tion investigated by Polani et.al. [9], as well as the conditions reducing “the influence
of cognition difference” introduced by Cai et.al. [3] in the context of RoboCup.
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