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Abstract. In this paper we consider a multi-cellular sensing and communication
network, embedded in an ageless aerospace vehicle, that is expected to detect and
react to impact location, intensity and damage over a wide range of impact ener-
gies. In particular, we investigate self-organisation of impact boundaries enclos-
ing critically damaged areas, and measure their spatiotemporal robustness. The
presented quantitative information-theoretic techniques clearly identify phase tran-
sitions, separating chaotic dynamics from ordered and robust patterns.

1 Introduction

The research results presented in this paper were obtained as part of the joint CSIRO-
NASA Ageless Aerospace Vehicle (AAV) project. The aim of the AAV project is to
develop and critically examine concepts for integrated smart sensing and communica-
tion networks, with the ultimate goal of developing a self-monitoring, self-repairing
aerospace vehicle [1, 6, 11].

A modular (multi-cellular) sensing and communication network is expected to de-
tect, report on and react to impact location, intensity and damage over a wide range of
impact energies, ranging from micro-particles to meteoroids. The network is expected
to self-organise in the face of damage to its parts so that robust monitoring and reporting
continues as long as possible. To achieve this, we modelled and simulated a multi-agent
system made of “cells”, that will not only form a physical shell for an aerospace vehi-
cle, but will also have sensors, logic, and communications. The primary principle that
is followed in our work is the emergence of global response as a result of interactions
involving transfer of information embedded locally — in order to completely avoid or
reduce the number of single points-of-failure. In other words, without centralised con-
trollers, agents (cells) are expected to self-organise and survive on the basis of local,
rather than global, information (no single agent has access to what everyone else is do-
ing). Single cells may need to make fast and automatic responses to sudden damage,
while collections of cells may solve more complex tasks, for example, produce an im-
pact boundary with desired characteristics [6] or form a spanning tree connecting cells
that detected non-critical impacts [11]. Importantly, the behaviour of each cell should
be as simple as possible, in terms of the internal logic and the communication policies.
Economy of information is directly related to the ability to manufacture new and repair
or replace damaged cells: the simpler the cell, the easier it is to repair/replace it.



Recent advances in sensor networks and micro-electro-mechanical devices led to
the idea of localised algorithms, in which simple local node behaviours achieve a de-
sired global objective [3, 7], while communicating only with nodes within some neigh-
bourhood. However, despite some progress, there is a lack of a unifying methodol-
ogy underlying design of localised algorithms. The main question is how to produce
and retain desirable emergent behaviour while avoiding potentially adverse patterns of
agents’ interaction. Some promising results have been reported by Nagpal [8], in con-
text of amorphous computing, where programmable self-assembly was demonstrated
using biologically-inspired multi-agent control. Nagpal defined a small class of primi-
tives (eg., gradients, neighbourhood query, polarity inversion, cell-to-cell contact, etc.),
a set of global operations, and a translation implementing the global operations as lo-
calised algorithms using the set of primitives. However, the question of how to obtain
and inter-connect global operations themselves is left unanswered. Moreover, the task
of discovering the correct primitives and translating them into localised agent programs
would have to be repeated for each domain.

The problem of global response engineering in multi-agent networks motivates our
search for patterns and invariants in self-organisation of multi-agent systems monitoring
and repairing impacts on the AAV. Our proposed methodology is based on an iterative
process including the following steps: a) forward simulation leading to emergent be-
haviour (for a class of localised algorithms dealing with impacts of various strengths); b)
quantitative measurement of bounded emergent behaviour (using information-theoretic
metrics for phase transitions); c) evolutionary modelling of the desired global emer-
gent behaviour, where the fitness functions correspond to the metrics obtained at step
b). The work on impact boundaries [6] and impact networks [11] modelled the step a).
This paper studies the step b).

2 Impact Boundaries

Ideally, a modular multi-cellular AAV skin should trace impact boundaries and spread
despite connectivity disruptions and cell failures — analogous to the clotting of a wound
on a mammal and the regeneration of neurons by re-growing severed axons within a
myelin sheath. One of the immediate tasks is the formation of impact boundaries en-
closing critically damaged areas. It is highly desirable that such boundaries form contin-
uously connected closed circuits, and are robust to fluctuations caused by proximity to
the impact. In short, the aim is to achieve spatiotemporal stability in impact boundaries.

Let us briefly sketch here the AAV simulator and the algorithms producing self-
organising continuous and closed impact boundaries that are presented in more detail in
[6]. In the AAV simulator events may occur in parallel, so the simulation is, essentially,
a state machine that sweeps through the cells, updating their current state on a regular
basis. Cells are represented as objects (polygons) on a two-dimensional plane, where
they interact only with their immediate neighbours in von Neumann neighbourhood,
through connected (geometrically overlapping) communication ports. Furthermore, the
AAV simulator has the ability to simulate simple environmental effects, such as the
incidence of small impacts.

An important characteristic of a critical impact is that, typically, energy of the im-
pact dissipates throughout some neighbourhood, destroying cells close to the point of



the impact (epicenter) and damaging the communication links between the survived
cells. The communication damage is simulated by assigning a probability of a bit er-
ror dependent on proximity of the affected communication port to the epicenter. The
proximity dependency underlying the probability distribution can be modelled in many
ways, and we investigated a range of functions — from linear to exponential decreases.

Our first target was formation of a boundary that is not necessarily continuously
connected as a closed circuit, but is well placed in separating the cells that suffered un-
recoverable communication damage (including those that were completely destroyed)
from the cells that are able to communicate to their normal functional capacity. The
initial algorithm enables self-organisation of both an internal “scaffolding” and the
“frame” of the desired closed boundary, regardless of cells shape (triangular or square),
and includes the following communication policies and behaviours:

(i) every cycle each cell sends an “OK” message to all its neighbours;
(ii) upon receiving the “OK” message each cell replies with an “Acknowledgement”

message;
(iii) if all neighbour cells failed to communicate the “OK” message, switch to the

scaffolding state Ss;
(iv) if at least one neighbour cell failed to communicate the “OK” message and

at least one neighbour cell did communicate the “OK” message, switch to the frame
boundary state Sf .

(v) if all neighbour cells failed to communicate the “OK” message or there is no
“Acknowledgement” message from any neighbour cell, stop sending messages.

In order to produce continuously linked closed boundary, we need the following:

(vi) if the cell state is Sf , and there are at least two communicating neighbours β1

and β2, switch to the closed state Sc.
(vii) if the cell state is Sc, 1) determine a (the) cell α that failed to communicate;

2) determine two communicating neighbour cells β1 and β2 nearest to the cell α on
opposite sides (clockwise and counter-clockwise relative to α); 3) establish a boundary
link between ports to β1 and β2; 4) map the directions to α, β1 and β2 to a desired
direction γ; and 5) send a “Connect(τ, γ)” message to these neighbours with a “time
to live” parameter τ ;

(viii) upon receiving “Connect(τ, γ)” message from the cell α, if the cell state is not
Sc, 1) switch to the state Sc; 2) determine the communicating neighbour cell β nearest
to the cell α in the direction γ; 3) establish a boundary link between ports to α and
β; 4) if τ > 0, map the directions to α and β to a desired direction γ ′ and 5) send a
“Connect(τ − 1, γ ′)” message to the neighbour β.

The “time to live” parameter τ determines the maximum amount of time the message
may live in the network, effectively setting a limit on the number of cells the message
may pass through before being discarded. In general, the described policy achieves the
desired robustness and continuity of self-organising impact boundaries for a variety of
cell shapes, impact energy dissipation profiles and communication damage probability
models (Figure 1). However, on some occasions the boundary is erratic and unstable
— some cells frequently change their states from “frame” to “scaffolding” to normal,
etc. The reason for this spatial and temporal instability is that, a simple detection of



Fig. 1. A stable impact boundary: square cells (ρ = 10). White cells are destroyed, dark-grey cells
form “scaffolding”, black cells form “frame”. Boundary links are shown as white double-lines.

a missed acknowledgement may sometimes be insufficient — especially when the in-
volved cells are on a periphery of the damaged area. In other words, in order to detect a
persistent failure in communications with an adjacent cell, the cell needs to filter away
spurious occasional miscommunications. The length ρ of such a filter (i.e., the cell-to-
cell communication history, allowed to be kept by each cell), is an important parameter,
directly affecting spatial and temporal stability of self-organising impact boundaries.
Our experiments verified that larger values of ρ lead to stable boundaries, while ρ = 0
(no hysteresis at all) could not produce any boundaries (Figure 2).

Fig. 2. An unstable impact boundary: square cells with ρ = 0.

3 Spatiotemporal Stability and Phase Transitions
The analysis of spatiotemporal stability of self-organising impact boundaries with re-
spect to the parameter ρ is the primary subject of our investigation. In particular, we
characterise dynamics of multi-cellular impact boundaries in terms of generic information-
theoretic properties, such as the Shannon entropy, and pinpoint certain phase transitions.



Information-theoretic methods are applied in many areas exhibiting multi-agent in-
teractions. For instance, Cellular Automata (CA) are a well-studied class of discrete
dynamical systems with emergent behaviour resulting from local and short range inter-
actions, and where information-theoretic measures of complexity (such as Shannon en-
tropy of certain frequency distributions) were effectively used to categorise and classify
distinct emergent configurations and phase transitions between them [13, 5]. Langton
has shown in his seminal work [5] that an increase in the mutual information (defined
as a function of individual cell entropies for a particular value of the λ parameter) is
an indication of a phase transition from “order” to “chaos”. Wuensche [13] has used
a similar quantitative metric — variance of input-entropy over time — in classifying
rule-space of 1-dimensional CAs into ordered, complex and chaotic cases, related to
Wolframs’s qualitative classes of CA behaviour [12]. It has also been pointed out by
Suzudo [10] that the entropy trajectory (plotting spatial entropy against temporal en-
tropy) is a useful descriptor for a variety of self-organised patterns. For example, cer-
tain (non-complex) types of CA have simple entropy trajectory and do not renew their
self-organised spatiotemporal pattern. Complex CA have an irregular entropy trajectory
in the temporal-spatial entropy plane (similar to Figure 7), and renew the pattern.

The information-theoretic analysis of phase transitions is typically based on the
notion of mutual information. For instance, Langton [5] investigated the mutual infor-
mation of CA, defined as a simple function of the individual cell entropies, H(A) and
H(B), and the entropy of the two cells considered as a joint process, H(A, B):

I(A; B) = H(A) + H(B) − H(A, B)

and related it to phase transitions. In particular, trajectories of entropy H(A) and mutual
information I(A; B) between a cell and itself at the next time-step were obtained while
varying the parameter λ — the ratio of cells with a given property (“live” cells, for
example). Interestingly, the individual cell entropy H(A) was increasing with λ, and
showed a discrete jump between low and high entropy values. This evidence pointed to a
first-order phase transition, similar to that observed between the solid and fluid phases of
matter, however the fact that the gap is not completely empty suggested the possibility
of second-order transition [5]. Another intriguing feature was that the average mutual
information has a distinct peak at the transition point:

the average mutual information is essentially zero before the transition point,
it jumps to a moderate value at the transition, and then decays slowly with
increasing λ. The jump in the mutual information clearly indicates the onset of
the chaotic regime, and the decaying tail indicates the approach to effectively
random dynamics.

It is important to realise that there are two opposing forces shaping the trajectory of
mutual information — individual diversity and interdependence. In the case studied by
Langton, increasing λ led to an increase in diversity and growth of individual entropy.
At the same time, correlation and interdependence (reflected in the entropy of the joint
process) were decreasing: at the start the cells were overly dependent, and at the end
they were practically independent of each other. The “battle” between these two forces
is the most intense at the transition point, or in other words, at the edge of chaos, where
the system dynamics exhibits the most complexity.



A metric based on mutual information is suitable precisely because it incorporates
these two tendencies into a single expression. Another way to achieve this combina-
tion is to use a variance of input-entropy. Wuensche [13] characterised rule-spaces of
1-dimensional cellular automata with the Shannon entropy of rules’ frequency distribu-
tion. More precisely, given a rule-table (the rules that define a CA), the input-entropy at
time step t is defined as

St = −

m∑

i=1

Qt
i

n
log

Qt
i

n
,

where m is the number of rules, n is the number of cells (system size), and Qt
i is the

look-up frequency of rule i at time t — the number of times this rule was used at t across
the CA. The input-entropy settles to fairly low values for ordered dynamics, but fluctu-
ates irregularly within a narrow high band for chaotic dynamics. For the complex CA,
the input-entropy generally follows an attractor cycle, where order and chaos may pre-
dominate at different times causing the entropy to vary. A measure of the variability of
the input-entropy curve is its variance or standard deviation, calculated over time. This
variance, in a sense, captures mutual information contained in CA dynamics, combining
both individual rules’ diversity and their interdependence (correlation). Wuensche has
convincingly demonstrated that only complex dynamics exhibits high variance of input-
entropy, leading to automatic classification of the rule-space. Importantly, the peak of
input-entropy variance points to a phase transition again.

We believe that a metric modelled after the input-entropy St may capture only the
temporal stability of impact boundaries, but not the spatial stability of continuous and
closed circuits. Put simply, the input-entropy St may be very low and may vary only
slightly for temporally stable patterns that keep their disconnected shape. So it would
have to be complemented with another metric designed for spatially connected patterns.
The random graphs theory that dates back to seminal works of Erdos and Renyi [2] sug-
gests to use the size of largest connected sub-graph (LCS) and its variance or standard
deviation obtained across an ensemble of graphs, as an indicator of phase transitions in
the graph connectivity. It is well-known that critical changes occur in connectivity of a
directed graph as the number of edges increases — the size of the LCS rapidly increases
as well and fills most of the graph, while the variance in the size of the LCS reaches a
maximum at some critical point before decreasing [4]. A metric based on the variance
in the size of the LCS may capture connectivity in impact boundaries. Again, by itself,
it would be insufficient: a continuous boundary may change its shape over time, without
breaking into fragments, and keeping the size of LCS almost constant. Together, tempo-
ral and spatial metrics may capture both important aspects — steadiness and continuity
of impact boundaries.

4 Experimental Results
In order to analyse temporal stability, we consider state changes in each cell at every
time step. There are 6 symmetric boundary links possible in each square cell, connecting
ports “left-right”, “top-bottom”, “left-top”, etc. (Figure 1). Thus, there are 26 possible
boundary states (including “no-boundary”), and m = 212 transitions. These transitions
describe space-time dynamics inside an 1-cell neighbourhood (in CA terms), and ex-
emplify a more general case of p-cell neighbourhoods (von Neumann neighbourhood
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Fig. 3. Temporal entropy Htemp(ρ) for ρ = 0 (top), ρ = 4 (middle), and ρ = 10 (bottom).

with p = 5; Moore neighbourhood with p = 9, etc.). For each value of the parameter
ρ (varying from 0 to 20), we calculate the entropy Htemp(ρ) of a particular frequency
distribution St

i (ρ), where t is a time step, and i is a cell transition index: 1 ≤ i ≤ m.
Analogously to the analysis conducted by Wuensche [13], we define input-entropy as

Htemp(ρ) = −

m∑

i=1

St
i (ρ)

n
log

St
i (ρ)

n
,

where n is the system size (the total number of cells), and St
i (ρ) is the look-up frequency

of the transition i at time t. Each experiment simulates an impact at a predefined cell,
and lasts 500 cycles; the first 2ρ cycles are excluded form the distribution S t

i (ρ) in order
not to penalise longer history (filter) lengths. Figure 3 plots temporal entropy Htemp(ρ)
for different history lengths ρ. The ρ = 10 plot is almost a straight line — there is
practically no variation in the entropy values, as the boundary is stable. We conducted
three experiments for every value of ρ, calculating standard deviation σtemp(ρ). The
plot of σtemp(ρ) is shown on Figure 4, clearly identifying a phase transition for some
critical value of ρ between ρ = 4 and ρ = 5.

The analysis of spatial stability of impact boundaries is based on the concept of a
connected boundary-fragment (CBF). A CBF is simply a set F of cells in the closed
state Sc such that every cell in F is connected with at least one other cell in F , and
there exist no cell outside F which is connected to at least one cell in F (an analogue of
a maximally connected subgraph or a graph component). We carried out 63 more exper-
iments (3 for each value of ρ between 0 and 20), calculating the average size Hsp(ρ) of
CBF’s in self-organising impact boundaries at each time-point, and its variance σsp(ρ)
over time. Figure 5 plots Hsp(ρ) for ρ = 0 (bottom), ρ = 4 (strongly fluctuating), and
ρ = 10 (almost straight line). It is clear that the impact boundary in this case has a
size 24, and the hysteretic behaviour of length ρ = 10 leads to stable self-organisation.
On the other hand, the cells without any hysteresis (ρ = 0) are not capable of self-



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Std. dev.

History length

bb
b

bb

b

bb

b

b
b

b

b

b

b

bb

b

bb

b b

b

b

bbb

b

bb

b

b

b

b

b

b

bbb
b

b

b

b

b
b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

bb

b

Fig. 4. Standard deviation σtemp(ρ) of temporal entropy Htemp(ρ).

organisation at all — an average CBF contains about 5 cells. The intermediate case
(ρ = 4) is most unstable, however! Sometimes it creates boundaries twice as long as
needed, and sometimes it collapses into a lot of small fragments. In other words, the
hysteretic behaviour leads to “order”, while tropistic behaviour, using a direct mapping
from communication inputs to actions (ρ = 0), produces “chaotic” dynamics. Some-
where in the middle, we observe “complex” dynamics, and Figure 6 makes the phase
transition apparent — again, between ρ = 4 and ρ = 5. The entropy trajectory in the
temporal-vs-spatial plane is shown in Figure 7, plotting σsp(ρ) against σtemp(ρ). The
bottom-left “order” corner (the points after the phase transition) is clearly contrasted
with the top-right “chaos” (the points before the phase transition). The small cluster in
the bottom-centre region corresponds to tropistic behaviour (ρ = 0). Absence of any
points in the middle indicates a first-order phase transition.

5 Conclusions

In this paper, we considered formation of impact boundaries that enclose critically dam-
aged areas on a multi-cellular skin of ageless aerial vehicles. A number of quantitative
techniques measuring spatiotemporal robustness of self-organising boundaries was pre-
sented. In particular, we focussed on identifying the “edge of chaos”, leading to dis-
covery of evident phase transitions in sensor networks. In future, we intend to use the
presented metrics as fitness functions — in evolving the desired global behaviour.
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