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Abstract

In this paperwe describenovel metricsmeasuringcom-
plexity in self-oiganisingnetworks. The metricsare inves-
tigatedwithin the context of decentalisedinspectionsde-
velopedandimplementeds part of thejoint CSIRD-NASA
AgelessAemspacefkhicle(AAV) reseach project. TheAAV
ConceptDemonstator is a hardware multi-cellular sens-
ing and communicatiometworkwhich is expectedto de-
tectand reactto multiple impacts,without any centialised
contollers. We presentan extensionof an Ant ColonyOp-
timisation algorithm, using an Adaptive Dead Redoning
Sdemeand producingrobustandreconfiguable minimum
spanningtreesconnectingautonomoug\AY cells. We then
introducea new metric detectingemegencethroughirr eg-
ularities in the multi-agent communicationsand contrast
it with corventional macio-level (“global-view”) graph-
theoeetic metrics.

1 Introduction

Structuralhealthmonitoring (SHM) is expectedto play
a critical role in the developmentand exploitation of fu-
ture aerospacesystems,operatingin harshworking envi-
ronmentsandrespondingo variousforms of damageand
possiblemanufcturingand/orassemblyprocesyariations.
NASA'svision of self-monitoringrobustaerospacegehicles
includesbothlocal andglobal SHM systemg8]. Thelocal
inspectionsareanticipatedo autonomouslydentify, evalu-
ate,andtriggerrepairfor awide rangeof damageor defect
conditionsin aerospacenaterialsandstructures.In paral-
lel, globalinspectionshouldbe ableto dynamicallyevalu-
atestructuralintegrity acrosdarge andremoteareas.This
dualarchitecturejn turn, entailsthe needfor dynamicand
decentralise@dlgorithmsusedin damagedetection evalua-
tion, diagnosticandprognosis.

A distinguishing feature of complex systems, using
dynamic, distributed and decentralisedalgorithms, is the
emepgenceof system-lgel behaiour out of theinteractions
amonglocal nodes. Traditional multi-componensystems,

including SHM systemsdo not exhibit self-oiganisation—

instead,they rely on fixed multiple links amongthe com-
ponentsin orderto efficiently control the system,having

fairly predictableproperties,at the expenseof being less
scaleableandlessrobust. Consequentlythe traditionalde-
sign and verificationmethodologiesievelopedso far have

very limited applicabilitywith respecto comple systems:
they do not captureself-oiganisationandcannotfully mea-
sureresilience fault-toleranceandrecovery.

A promisingnew approacho analysis,designandver
ification of complex SHM systemsis to useentropy and
informationtransferin measuringself-oiganisation[20, 7,
18, 19, 14]. The metrics for detectingand measuring
non-deterministiemegentbehaiour canbe incorporated
within fitnessfunctions,usedin evolving desiredsystem-
level outcomeq18, 19]. A significantdravback of mary
available measureshowever, is their assumptiorof a full
information of the systemsdynamics— a “global view”,
and a subsequendeteriorationof quality when this infor-
mation is only partially accessible. The agendaof this
paperis, therefore,three-fold: we aim to presenta dy-
namic decentralisedalgorithm solving an SHM task via
self-oganisationapplya macro-level (“global-view”) met-
ric to capturethe quality of the emepgentsolution;andthen
verify the solutionwith a micro-level metric basedon the
irregularity of the multi-agentcommunicationspace Such
a metricwill suggest way to develop metricshasedonly
on partialinformation— localisablemetrics

This investigation is carried out in the contet of the
CSIRO-NASA AgelessAerospacévehicle (AAV) project.
The AAV ConceptDemonstrato(CD) is a hardwaremulti-
cellular sensingandcommunicatiometwork whoseaim is
to detectand reactto impactscausedby projectilesthat,
for avehiclein space might be micro-meteoroid®r space
debris[1, 12, 14]. The next sectiondescribeshe AAV-
CD andthe problemof decentralisedhspectionsfollowed
by a review of complity measureslevelopedover the
recentyears(Section3). Section4 describesa modified
Ant Colory Optimisationalgorithm pre-optimisingdecen-



Figure 1. An aluminium panel with 4 cells.

tralised inspections,while Section5 introducesthe em-
ployed metricsandpresentshe experimentakesults.

2 AAV Concept Demonstrator

The primary principlethatis followedin the AAV work
is theemepgenceof a global respons@saresultof interac-
tionsinvolving transferof local information. This approach
attemptsto completelyavoid or reducethe numberof sin-
gle points-of-filure, leadingto robustimpactsensingnet-
works. The secondimportantprinciple is scalability with
respectto manufcturingnew or repairingdamagednod-
ulesor “cells”. The AAV-CD consistf cells,thatnotonly
form aphysicalshellfor anaerospacegehicle,but alsohave
sensorsjogic, and communications.Currently eachcell
containsa small numberof passie piezoelectricpolymer
sensorsdondedto an aluminiumskin panelin orderto de-
tecttheelasticwavesgeneratedn the structureby impacts.
At the moment,the structureof the AAV-CD is a hexago-
nal prism. A modularaluminiumframeis coveredby 220
mm x 200 mm, 1-mm thick aluminiumpanelghatform the
outerskin of the structure. Eachsuchpanelcontainsfour
cells(Figurel), andeachof the six sidesof the prism con-
tainseight of thesepanelssothe entire AAV-CD contains
48 panelsand 192 cells. Eachcell also contains2 digital
signalprocessorspneof which acquiresdatafrom the sen-
sors,while theotherrunstheagentsoftwareandcontrolsthe
communicationsvith its neighbouringcells. Importantly a
cell communicatesnly with 4 immediateneighbours:the
AAV-CD doesnot employ centralisedcontrollersor com-
municationrouters. Single cells may detectimpactsand
triangulatetheir locations,while collectionsof cells may
solve morecomple tasks;for example,produceanimpact
boundarywith desiredcharacteristicfl4] or animpactnet-
work [17] to pre-optimiseénspectionsandrepairs.

Decentralisednspectionacrossthe AAV network array
may requirean impactnetwork— a robust reconfigurable

network connectingemoteAAV cellsthatbelongto a spe-
cific class,e.qg.,the cells thatregisteredimpactswith ener

gieswithin acertainband(non-criticalimpacts)17, 1]. The
self-omganisingimpact networks createan adaptve topol-
ogy allowing inspectionagentdcommunicatiorpacletsor,

potentially swarming robots)to quickly explore the area
andevaluatethe damag€ge.g.,identify densitiesof impacts
typical for a meteorshaver) — particularly wherea num-
ber of individually non-critical damagesites may collec-
tively leadto a moreseriousproblem. Roboticagentanay
needanimpactnetwork which solvesatravelling salesper
sonproblem(TSP).On the otherhand,a shortestor mini-

mumspanningtreeis oftenrequiredin orderto enablede-
centralisednspectionswith virtual (software)agents.

Let us define the AAV impact network. The two-
dimensionalAAV arraycanberepresentetly a planargrid
graph G: the product of path graphson m and n ver
ticesV (G), which are pointson the planarinteger lattice,
connectedy the edgesE(G) at unit distancegFigure 2).
Given a numberof non-criticalimpacts,all cellsthathave
detectedthesenon-critical impactscan be representedy
asubsetP of V(G). We needto identify thoseedgesZ in
E(G) whichconnectheverticesin P minimally, sothatthe
total distancgla sumof unit distancesassignedo edges?)
is shortest.This problemis, essentiallythe standardmini-
mumspanningree(MST) problem,exceptthata spanning
treeis definedfor agraph,andnotfor a setof vertices.Our
problemis sometimeseferredto in literatureastherectilin-
ear minimum (terminal-) spanningtree (RMST) problem,
while theverticesin P arecalledterminals,andis afunda-
mentalproblemin VLSI design[9]. The importantdiffer-
encebetweenMST andRMST is thatratherthanchoosing
MST edgesout of the graphedgesE (G) directly connect-
ing pairsof vertices,we needto find multi-edgerectilinear
pathsbetweenverticesin P, minimising the total distance.
In otherwords, we needto define an auxiliary complete
graph A, whosevertex setis P andin which the edgepq
for p,q € P with p # ¢ haslengthequalto the Manhat-
tan distancebetweemodesp andq. ThegraphA is nota
grid graph— it is anabstractiorusefulonly to formalisean
impactnetwork. After a standardVIST, A;, is identifiedin
A, we merelyneedto corvert all edgesn A, to rectilinear
pathsonthegrid graphG (Figure2).

The impact network problemis complicatedby possi-
ble “obstacles”createdby discontinuitiesin the AAV grid
graphG. Initially, the grid graphG is solid — it doesnot
have ary “holes” — so its complementin the infinite or-
thogonalplanargrid is connected. New critical impacts
may createsuchholesin the grid. Figure?2 illustratesthe
RMST problemwith two scenariosThefirst caseis shovn
in thetop part,andinvolvesthreeedgesanda simpleMST,
A;. Thesecondtasds shovn in thebottompart: somecells
aredestrged(thecorrespondingerticesareremoved),and
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Figure 2. Three impact nodes are shown in
black. The top-left figure shows a complete

auxiliar y graph A (dashed lines) with 3 edges.
The conversion of its MST to rectilinear paths

is shown in the top-right figure (dashed
edges). Two lower figures show the graph
with some vertices removed: the bottom-left
figure shows an updated auxiliar y graph A,
and the bottom-right figure shows conversion
of the new MST to rectilinear paths.

theauxiliary completegraphshouldbeupdateecausene
shortestpath haschanged.This requiresa re-computation
of its MST, with anotheredgebeingselectecandcorverted
to arectilinearpath. Thereforeanew obstaclemaynotjust
requirethat a new shortestpathis found betweenthe two
involved cells (the probleminvestigatedby Wu etal. [21]),
but ratherthat the whole MST is re-evaluated. Moreover,
thereare caseawvhena terminalis no longerneededo be
includedin theRMST, or anew terminalneedgo beadded.

Thus, from a graph-theoreticstandpoint,the represen-
tation of the impact network problem changesover time
dueto insertion of new nodes(e.g., non-criticalimpacts)
or deletionof old nodesno longerfitting the impactrange,
while the problems propertieschangedueto varying con-
nection costs (e.g., critical impacts destrging existing
paths).In short,we needa dynamicanddecentralisedom-
putationof arectilinearminimumterminal-spanningreein
the presenceof obstacles.If the information (suchasthe
auxiliary graph A) wasavailablein onecentralpoint, then
RMST problemwould essentiallypecomeMST problem,
with a subsequentorversionto rectilinearpaths. In our
case,the auxiliary graph A is not even known at ary sin-
gle node/cell. So, on the one hand, the desiredalgorithm
shouldbebothdecentralise@ndfully dynamic(bothinser
tions and deletionsmustbe handledonline), while on the
otherhand,our main concernis the communicationover-
headof determiningthe desirediopology

Our ultimate goal is to develop and verify the method-
ology for evolving suchalgorithms— in otherwords, we
should investigate not only algorithmic details, but also
evaluationmetricsidentifying distinct phasesn algorithm
performance.Thesemetricscansene asfitnessfunctions,
identifying critical parameter$18] andguiding the design
towardsdesiredobjectves.

3 Background and Mativation

Self-omganisationis typically definedasthe evolution of
a systeminto an organisedform in the absenceof exter-
nal pressures.For example, a self-assemblyof network-
like structureconnectinga setof nodeswithout usingpre-
existing positionalinformation or long-rangeattractionof
the nodesis describedby Schweitzerand Tilch [15] us-
ing Brownianagentghatarecapableof producingdifferent
local chemicalinformationand respondingo it in a non-
linearmanner Theseagentssolve two tasksin parallel: (i)
thedetectiorof theappropriatsmodesand(ii) theestablish-
mentof stablelinks betweerthem.A concreteanddetailed
implementatiorof fault-tolerantcircuit synthesison a self-
configurablenardwareplatformis providedby the Cell Ma-
trix approacH5]. The approachemploys local nodes(Su-
percells) performingfault detectionfaultisolation,config-
urationof new Supercellsdeterminatiorof inter-cell wiring
pathsandimplementatiorof thefinal desiredtargetcircuit.

In general self-omganisingsolutionsdepencdbn selection
pressuresvhich, throughtheir contritution to the evolu-
tionaryfitnessfunctions,constrainthe emegentbehaiour.
One example of a genericselectionpressureis the spa-
tiotempoal stability of emepgent patterns: aguably ary
patternhasto be stable before exhibiting anotheruseful
task-orientedeature.The useof spatiotemporasdtability in
evolving AAV impactboundariegcontinuouslyconnected
multi-cellular circuits, self-organisingin presenceof cell
failuresandconnectity disruptionsarounddamagedreas)
is describedn [7, 14, 18], emplgying information-theoretic
andgraph-theoretieneasurefn separatinghaoticregimes
from ordereddynamics.

The information-theoretictempoal AAV metric cap-
tured the diversity of rulesinvoked by AAV cells during
an impact boundaryformation, and was modelledon the
classificationof a cellularautomatgCA) rule-spacechar
acterisedvith the Shannorentropy of therules’ frequeny
distribution[20]. Theinput-entroy settlego fairly low val-
uesfor ordereddynamics,but fluctuatesirregularly within
anarrav high bandfor chaoticdynamics.For complex CA,
orderand chaosmay predominateat differenttimes caus-
ing the entrofy to vary. A measureof the variability of
the input-entroly curve is its varianceor standarddevia-
tion, calculatedvertime. Comple< dynamicsexhibits high
varianceof input-entrop, pointingto a phaseransitionbe-
tweenchaosandordet



Thegraph-theoretispatial AAV metriccapturedheim-
pactboundarys connectvity in termsof the sizeof the av-
erageconnectedboundaryfragment— an analogueof a
largestconnectedsub-graph(LCS) and its standarddevi-
ation over time. The parametedriving the dynamicswas
alengthof communicatiorhistory . allowedto be keptby
eachAAV cell. Accordingto therandomgraphstheory[6],
critical changesare expectedto occurin connecwity of a
directedgraphasthe numberof edgesincreases.The size
of the LCS rapidly increasesaswell andfills mostof the
graph,while the variancein the size of the LCS reachesa
maximumat somecritical point beforedecreasing.Simi-
larly, an impactboundaryis highly disconnectedchaotic
phase)vhenthe parametey. is below its critical value py,
variesin connectity widely (the “edge of chaos”)when
the parametep reachests critical value 1o, andbecomes
well-connectedthe orderedphase)wheny > . In other
words,only complex dynamicsexhibits high varianceand
the peakof this variancepointsto a phaseransition[14].

Network connectivityis, then, anotherexample of an
independenselectionforce rewarding specificmulti-agent
network topologies. This force, we believe, is relatedto
both efficienoy and robustness,which were identified in
[16] ascritical measuresinderlyingoptimal network struc-
tures. A very promising direction was investicated by
Wright et al. [19] who designeda measureof emegence
of multi-agentswarming/flockingbehaiour asopposedo
both fully coordinated-‘crystalline” behaiour and totally
uncoordinatedlynamicsof independenparticles. Thepro-
posedmeasurd? estimateshelevel of self-omganisatiorvia
approximatiorof the dynamicalsystems characteristicdi-
mension— i.e., by determininghow well aswarm/flockcan
be describedasa singlebody:

Typically, the metrics targeting temporalstability and
spatial connecwity require a global view: full informa-
tion on eithercells’ states(to determinetheir diversity) or
their inter-connectiongto determinesub-graphconnectv-
ity). Our specificgoal, however, is a metric that canwork
with partial information, obtainedlocally. For example,
a singletemporallystableor a spatially connectedbound-
ary fragmentis clearly insufficient to claim that the whole
structureis stableor connected. We intendto shav that
the first steptowardsa localisablemetric canbe provided
by a metric operatingnot within AAV multi-cellular rule-
spaceor onthe surfaceof the AAV graph,but ratherwithin
theinter-agenttommunicatiorspace Beforedescribinghe
new metric, however, we needto review somedetailsof the
localisedalgorithmthatproducegheimpactnetworks.

4 Adaptive Impact Networks

The RMST problemon the AAV skin changesconcur
rently with the problem-solvingprocess,suggestingthat
it can be efficiently tackled by Ant Colory Optimisation

(ACO) algorithms, proposedand enhancedover recent
yearsby Dorigoandhis colleague$2, 3, 4], ratherthandis-
tributeddynamicprogrammingBellman-Ford) algorithms,
or reinforcementearningtechniquesuchasbacktracking.
An overview of the ACO meta-heuristi@andits applicabil-
ity canbefoundin [4]. Essentiallythe ACO algorithmsuse
the ability of agentsto indirectly interactthroughchanges
in theirenvironment(stigmegy) by depositingpheromones
andforming apheromonerail. They alsoemploy aform of
autocatalytichehaiour — allelomimesis the probability
with which anantchoosestrail increasesvith thenumber
of antsthatchosethe samepathin the past. The procesds
thuscharacterisetly a positive feedbackoop [3].

In the AAV-CD the antsareimplementedas communi-
cationpaclets, so the policiesareimplementedvia appro-
priate messag@assingwherethe cells areresponsibldor
unpackingthe paclets, interpretingthem, and sendingup-
datedpacletsfurtherif necessaryThus,antscannotmove
into the cellswith damagedor shutdavn) communication
links, so critically-impactedcells form obstaclesand the
antsaresupposedo find theshortespathsaroundthemus-
ing positively reinforcedpheromonérails. For our problem
it is impracticalto usetwo typesof pheromonge.g., the
“nest” and “food” pheromonespecausesachimpact cell
(node)senesbothasa “nest” anda “food” source.There-
fore, having two typesof pheromoneer nodewould have
creatednultiple pheromondields,combinatoriallycompli-
catingthe network. In addition, dissipationof pheromone
over large distancess not practicaleither asit would lead
to “flooding” of the network with messages-ence theal-
gorithmsdevelopedfor the AAV network useonly onetype
of non-dissipatie evaporatingpheromone.

The algorithm presentedn [17, 1] wasbasedon a hy-
brid methodof establishingmpactnetworks,usingasingle
impactgradientfield (IGF) and a deadreckoning scheme
(DRS),complementinghe autocatalytigprocesf ant-like
agents.Following [14], we summariseherea main variant
of thisalgorithm,withoutanIGF, andrelyingonly on DRS.
Thebehaiour of exploring antsincludesthefollowing:

(E1) eath impactnodegeneates K = 4 exploring ants
everyT = 20 cycles;ead anthasa “time to live” counter
T = 255, decementedverycycle;

(E2) an exploring ant performsa randomwalk until ei-
ther a) anotherimpactnodeis found, or b) the ant hasre-
turnedto thehomeimpactnode or c) theantcanmoveto a
cell with a non-zeo trail intensity;

(E3) if an exploring ant canmove to a cell with a non-
ze trail intensity thedestinatiorcell is selectecaccoding
to transitionalprobabilities[14];

(E4) at eath stepfromcell ¢ to cell j, an exploring ant
updatesthe x- and y-shift coordinatesfrom the homenode
(initially setto 0).



The parametersk, T, 7, may vary, and the frequeny
K/T, in particular hasan effect on corvergenceand the
communicatioroverhead1]. The DRS requiresthateach
antremembersghex- andy-shift coordinategrom thehome
node. Thesecoordinatesare relative, they simply reflect
howv mary cells separatehe ant from the home nodein
termsof x andy at the moment,and shouldnot be con-
fusedwith ataku list of an ACO agentcontainingall visited
nodesn termsof someabsolutecoordinateor identification
system. The DRS enableghe agentsto headhomewhen
anothelimpactnodeis located usingthefollowing rules:

(R1) whenanotherimpactnodeis found,the exploring
antswitchesto a returnstate remembestheratiog = y/x
correspondingto the found nodes coodinatesrelative to
thehomenode andstartsmoving bad to thehomenodeby
moving to cells wheee the y- and/or x-shift coordinates(s)
would be smallerandtheir ratio would be as closeas pos-
sibleto g; if both x- andy-shiftare zeio (the homenode),
thereturningant stops;

(R2) if the cell suggestedby the DRS (minimisationof
x- and/or y-shift, while maintainingg) cannotbe reathed
becauseof a communicatiorfailure (an obstacle) the ant
selectsan obstacle-avoidingnove according to the transi-
tional probabilities[14]; uponthis selectionthe ant keeps
to the chosenpath until the obstacleis avoided,as recay-
nisedby comparisorof currenty /z ratio with g;

(R3) each cycle a returningant depositsphelomonein
the quantity inversely proportional to the traveisedreturn
distanceyg (g isincrementedy 1 ead cycle);thedeposited
pheiomoneis limited by a pre-definednaximumy,,,q.-

The pheromoneis deposited on the cells them-
seles rather than communicationlinks — we deal with
pheromonérail intensitiesp; atthecell j. Eachcell stores
an ant-routingtable,usedin determiningwhich neighbour
cell shouldbe chosenby an incoming ant paclet to con-
tinuetheir travel. At ary giventime point¢, theant-routing
tableq; ;(t) of nodei with respecto all its neighbomodes
7, containedin the neighbourhoodV;, is proportionalto
pheromoneintensitiesy; (). The intensity of trail ¢;(t)
onthenode;j givesinformationon how mary antshave tra-
versedthenodein the past,andis updatedeachtime anant
agentk passeshroughthenode:

Ok

(pj(t) = min((pj(t) + qT(t)’ ‘pmax)a

where oy, is a constantquantity specifiedfor eachgener
atedant k, ¢ is the distancetraversedby the ant &, and
“maz 1S @limit on pheromonerail intensity Intuitively, the
quantity o, represents pheromoneresene of the ant &,
consumedluringthereturntrip (not unlike thewell-known
ANT-quantityscheme) At the beginning of eachcycle, the

pheromonevaporatesittheratep € (0,1):
@;(t) = (1= p) p;(t) = ¥ g;(t),

wherey = 1 — p isthepheromoneetentionrate.

An improvementto the DRS algorithm included an
adaptive pheromoneresene quantity o, and a “time to
live” counterr,. The pheromoneresene is adaptvely
allocatedby the generatingnode, basedon the ants re-
turnedto the nodein the past: o, = maxz(y1 4, Omin),
where( is the minimal distancetraversedby the returned
ants,v; is a scalingfactor ando,,,;,, is a lower limit for
the pheromoneresere allocatedfor an ant. Analogously
T = min(ve 4, Tmaz), WhEre€T,q. is anupperlimit for
the counter and~y- is a scalingfactor The Adaptive Dead
Recloning Scheme(ADRS) contritutesto a fasterrecon-
figuration of trails andminimumspanningrees.

The DRS algorithm producesminimum spanningtrees,
resultingin reconfigurabléempactnetworks, and performs
well in dealingwith two well-known problems:the block-
ing problem and the shortcutproblem. Bloding occurs
whena trail thatwasfound by the antsis no longer avail-
able due to obstacle(sland an alternatve trail is needed.
The shortcutcorresponddo a new shortertrail becoming
available dueto repairedcells. In this sectionwe present
a local heuristic(the “pause”heuristic),which contritutes
to a bettercorvergenceof the DRS algorithm. Let us con-
siderprobabilisticdecisionsof a returningantin the situa-
tion whenanobstacléblocksa DRS pathtowardsthehome
node.TheDRSalgorithmusesonly onetypeof pheromone
(the “impact” pheromone). For example, a returningant
facingan obstacleaheadand excluding a backtrackpossi-
bility hasa 50/50 chanceof turningleft or right, whenthe
trails are not yet established.Choosinga direction at this
decisionnoderesultsin the ant depositingthe pheromone
eitheron theleft or theright node. Clearly, this depositis
not an informed choice, being driven by a 50/50 chance,
andmayin factobscureghe pheromonerail. The updateof
the pheromoneon bothleft andright nodesshould,in fact,
be doneonly by the antsgoingin the oppositedirection,as
theseantshave traversedanalternatve path. This dilemma
is not presentwhenthe antsusetwo typesof pheromones.
A simplesolutionenhancinghe DRSalgorithm,usingonly
onepheromoneype,is provided by the“pause”heuristic:

(R4) an ant, facing an obstacleat cyclet and makinga
transitionto the next node doesnot depositanypheiomone
atcyclet + 1, resumingdepositonly fromcyclet + 2.

The “pause”heuristicinitially producesgapsin the trails,
next to eachdecisionpoint (Figure3). However, thesegaps
are eventuallyfilled by the antsgoing in the oppositedi-
rection, leadingto the reinforcementof the shortesttrail.
Figures3 and4 illustrate this dynamicswith snapshot®f
thesimulatedAAV-CD network array



Figure 3. White cells detected non-critical im-
pacts. An initial vertical trail is destroyed
by a horizontal obstac le (seven cells are re-
moved). The returning ants explore two alter-
native possibilities. The gaps in both trails
form next to each decision node.
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5 Complexity Metrics and Experiments

The “global-view” or macro-leel analysisof ACO-
ADRS algorithm corvergenceis basedon the conceptof
a connectedrail-fragment(CTF) — an obvious analogue
of a connectedsub-graph.A CTF is asetF' of cellswith
¢ > 9 (whered is a giventhreshold),suchthatevery cell
in F'is connectedvith atleastoneothercell in F', andthere
exists no cell outside F' which is connectedo at leastone
cellin F'. Tracingthe averagesize S of CTFsandits vari-
ancec? over time allowed us to identify emegenceof the
shortespathasa phasedransitionin network connectvity.

We carried out 10 experimentsfor eachvalue of the
pheromoneetentionrate) in the rangebetween).81 and
0.99. During eachexperiment,a simple straighttrail was
initially formedbetweer2 impacts,andthenbroken at cy-
cle 200 by an obstacle.As before,we calculatedthe aver
agesizeof CTF'sin impactnetworks, S(¢), at eachtime-

o o
T T

Standard deviation of CTF size
IS
T

L L L L L L L L L
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Pheromone retention rate

Figure 5. A chaotic phase (fragmentar vy trails)
is separated by the edge of chaos (first maxi-
mum at ¢ = 0.94) from the first ordered phase
(stable short trails at ¢ =~ 0.96); with another
phase transition to combined trails (y > 0.98).

point, andits standardeviation, o(+/), over time. The ex-
pectedthreetypesof dynamics:chaotic,comple, andor-
deredwere obsened. Two “ordered” phasesare obsened
(Figure 5): the first (and the one we are interestedin) is
the emepgenceof the stableshortertrail aroundthe obsta-
cle as opposedto the longertrail, followed by the emer
genceof bothstabletrails aroundtheobstaclgwith ahigher
combinedlength). The first “ordered” phaseis separated
from the chaoticphasey) < 0.94, by the “edgeof chaos”,
1 € [0.94,0.96], andis identifiedby theminimumof o (¢),
attheretentionrate) = 0.96. Thereis another(“edge of
order”) region of complity, ¢ ~ 0.97, precedinghe sec-
ond “ordered” phaseat very high retentionratesy) > 0.98.
This phaseis of no interest: at suchratesthereis enough
pheromoneo supportmary trails.

Thus,the spatialmetric o (¢) suggestshat, in termsof
solving the blocking problem, the optimal pheromonere-
tentionrate ¢) can be identified as the one which attains
theminimum of the standardieviation (1)), following the
“edgeof chaos”pointedto by thefirst maximumof o (), as
we increase). In otherwords,well-connectedmpactnet-
works emegein the orderedphase characterisety mini-
mal () andlower entrofy of the network.

Self-olganisation may seemto contradictthe second
law of thermodynamicshat captureshe tendeng of sys-
temsto disorder The “paradox” has beenexplainedin
termsof multiple coupledlevels of dynamicactvity (the
KuglerTurvey model [10]) — self-oganisationand the
loss of entrofy occursat the macro-leel, while the sys-
tem dynamicson the micro-level generatesncreasingdis-
ordet One corvincing exampleis describedby Parunak
and Brueckner[11] in contet of pheromone-basedoor
dination. Their work definesa way to measureentroy at



the macro level (agents’behaiours lead to orderly spa-
tiotemporalpatterns)and micro level (chaoticdiffusion of
pheromonemolecules). In other words, the micro level
senesasan entropy “sink” — it permitsthe overall sys-
tementropy to increasewhile allowing self-oiganisationto
emepge and manifestitself as coordinatedmulti-agentac-
tivity onthemacrolevel. Anotherexamplerelatesa macro-
level increasef coordinatiorpotentialwithin a multi-agent
team,indicatedby a macro-level decreasén epistemicen-
tropy of agents’joint beliefs,with amicro-level increasen
the entrogy of the multi-agentcommunicatiorspace[13].
Similarly, we intendto shav that the emegenceof well-
connectedmpactnetworks, indicatedby the minimal vari-
anceof their fragments(an approximationof the network
heterogeneity)is explainedby increasedrregularity on a
micro-level. This micro-level is the communicatiorspace
wheretheinter-agentmessageareexchanged.

A characterisationf themicro-level (theentrogy “sink”)
canbeobtainedf oneestimateshe“regularity” of thecom-
municationspaceLet «;(t) denotethenumberof antpack-
etsreceived by the cell 7 attime cycle t. Thenthe average
loadcarriedby thecell i is givenby a; = 2?21 a;(t)/Q,
where(2 is the total numberof cycles. The regularity of
the seriesa; (t) canbe measuredvith the auto-correlation
functionof anintegerdelayr:

_ Xilonledt—7) — @ [ei(t) —ai]
Sialoa(t) - @

The auto-correlationfunction is equivalent to the power
spectrunin termsof identifying regular patterns— a near
zero auto-correlationacrossa rangeof delayswould in-
dicatehigh irregularity, while auto-correlatiorwith values
closeto oneindicatevery high regularity. The following
inverseaverageis a goodapproximatiorof thetotal irregu-
larity, or volume-perchannelcompleity, onthemicro-level
(thecommunicatiorspace):

Ar) =

i (T)

M
M
Zi:l 7 ()

where M is the numberof cells. It is importantto re-
alise that the volume-perchannelcompleity metric A\(7)
is a more refined measurethan a similar statisticé(7) =
1/~s(7), for ajoint series3(t) of all antpacletsreceved
by all M cells at time cycle ¢, where~s(7) is the auto-
correlationfunction for the joint series3(t). The differ-
encebetween)(7) and {(7) is that the former estimates
the regularity of the communicatiorchannelemployed by
eachcell v;(7) andtheninvertsthe averageover all chan-
nels, while the latter is definedin termsof the regularity
of the entire communicatiorspaceyg(r). Our conjecture
is that the highestirregularity on the micro-level, A(7, )
over the rangeof possiblevaluesof r, correspondso the
lowestvarianceon the macro-level, the minimal o (¢), and
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Figure 6. The median A(20,+) metric. The
maxim um at ¢ &~ 0.96 identifies the most irreg-
ular comm unication space, pointing to emer-
gence of well-connected impact netw orks.

indicatesthe obsened distinct phasesaswell. The plot of
the median\(20, ¢) calculatedduring the experimentsfor
eachvalueof thepheromoneetentionratesy) € [0.81,0.99]
is shavn in Figure6. As expectedthemaximumis attained
aty =~ 0.96, pointing to the mostirregular communica-
tion spaceandindicatinga phasetransitionin the commu-
nicationspace.This retentionrateis the rateat which im-
pact networks becomewell-connected also identified by
the spatial metric o as the orderedphase. Furthermore,
the point ¢y ~ 0.98 indicatesthe beginning of the move
towardsthe secondorderedphasein the parametespace
wheretheimpactnetworksincludeall possibletrails. Infor-
mally, themost“irregular” communicatiorspacemeasured
by the micro-level metric A, correspondso the most“co-
ordinated”,well-connectedphaseof impactnetworks. A
potentialadvantageof the A metric over the spatialmetric
o is, however, its possibilityto becomdocalised.lt maybe
possibleto meaningfullycalculate\ over a subsef com-
municationchannelswhile measuringpartial connectvity
of animpactnetwork is lesslik ely to succeed.

6 Conclusions

In this paper we considerecemegenceof animpactnet-
work pre-optimisingdecentralisednspectionson an AAV
skin, using an ACO algorithm enhancedwith the adap-
tive deadreckoning and pauseheuristics. The modified
ACO-ADRSalgorithmis deployedin the AAV-CD andro-
bustly solves blocking and shortcut problems, producing
rectilinearminimumspanningreesfor impactsensingnet-
works. This algorithm exemplifiesdynamicdecentralised
algorithmssolving SHM tasksvia self-omganisationandwe
appliedtwo metricsto evaluatetheemegentsolutions.The
spatialmetric, o(v), measureghe quality of impact net-
works on the macro-lerel throughthe connecwity of re-



sultantspanningrees.Thevolume-perchannekompleity
metric, A(¢), verifiesthe solutionon the micro-level (the
multi-agentcommunicationspace) andsuggesta way to
developmetricsbasednly on partialinformation— local-
isablemetrics

While we have not evolved parametergor the ACO-
ADRS algorithm, the obsened phasetransitionsclearly
identify the critical valuesthatwould be chosemasa result
of selectve pressuregspatialstability and/orcompleity of
communicationspace)— for example,by a geneticalgo-
rithm rewarding stablepheromonerails or irregular com-
municationpatternsThisis a subjectof futurework.
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