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Abstract
In this paperwedescribenovel metricsmeasuringcom-

plexity in self-organisingnetworks.Themetricsare inves-
tigatedwithin the context of decentralisedinspections,de-
velopedandimplementedaspart of thejoint CSIRO-NASA
AgelessAerospaceVehicle(AAV) research project.TheAAV
ConceptDemonstrator is a hardware multi-cellular sens-
ing and communicationnetworkwhich is expectedto de-
tectand reactto multiple impacts,withoutanycentralised
controllers. We presentan extensionof an Ant ColonyOp-
timisation algorithm, using an AdaptiveDead Reckoning
Schemeandproducingrobustandreconfigurableminimum
spanningtreesconnectingautonomousAAV cells. We then
introducea new metricdetectingemergencethroughirreg-
ularities in the multi-agent communications,and contrast
it with conventional macro-level (“global-view”) graph-
theoreticmetrics.

1 Introduction

Structuralhealthmonitoring(SHM) is expectedto play
a critical role in the developmentand exploitation of fu-
ture aerospacesystems,operatingin harshworking envi-
ronmentsandrespondingto variousforms of damageand
possiblemanufacturingand/orassemblyprocessvariations.
NASA’svisionof self-monitoringrobustaerospacevehicles
includesbothlocal andglobalSHM systems[8]. Thelocal
inspectionsareanticipatedto autonomouslyidentify, evalu-
ate,andtriggerrepairfor a wide rangeof damageor defect
conditionsin aerospacematerialsandstructures.In paral-
lel, globalinspectionsshouldbeableto dynamicallyevalu-
atestructuralintegrity acrosslargeandremoteareas.This
dualarchitecture,in turn, entailstheneedfor dynamicand
decentralisedalgorithmsusedin damagedetection,evalua-
tion, diagnosticsandprognosis.

A distinguishing feature of complex systems,using
dynamic, distributed and decentralisedalgorithms, is the
emergenceof system-level behaviour outof theinteractions
amonglocal nodes.Traditionalmulti-componentsystems,

includingSHM systems,donotexhibit self-organisation—
instead,they rely on fixed multiple links amongthe com-
ponentsin order to efficiently control the system,having
fairly predictableproperties,at the expenseof being less
scaleableandlessrobust. Consequently, thetraditionalde-
sign andverificationmethodologiesdevelopedso far have
very limited applicabilitywith respectto complex systems:
they do not captureself-organisationandcannotfully mea-
sureresilience,fault-toleranceandrecovery.

A promisingnew approachto analysis,designandver-
ification of complex SHM systemsis to useentropy and
informationtransferin measuringself-organisation[20, 7,
18, 19, 14]. The metrics for detectingand measuring
non-deterministicemergentbehaviour canbe incorporated
within fitnessfunctions,usedin evolving desiredsystem-
level outcomes[18, 19]. A significantdrawbackof many
availablemeasures,however, is their assumptionof a full
information of the systemsdynamics— a “global view”,
anda subsequentdeteriorationof quality whenthis infor-
mation is only partially accessible. The agendaof this
paper is, therefore,three-fold: we aim to presenta dy-
namic decentralisedalgorithm solving an SHM task via
self-organisation;applyamacro-level (“global-view”) met-
ric to capturethequalityof theemergentsolution;andthen
verify the solutionwith a micro-level metric basedon the
irregularityof themulti-agentcommunicationsspace.Such
a metric will suggesta way to develop metricsbasedonly
onpartialinformation— localisablemetrics.

This investigation is carried out in the context of the
CSIRO-NASA AgelessAerospaceVehicle(AAV) project.
TheAAV ConceptDemonstrator(CD) is ahardwaremulti-
cellularsensingandcommunicationnetwork whoseaim is
to detectand react to impactscausedby projectilesthat,
for a vehiclein space,might bemicro-meteoroidsor space
debris [1, 12, 14]. The next sectiondescribesthe AAV-
CD andtheproblemof decentralisedinspections,followed
by a review of complexity measuresdevelopedover the
recentyears(Section3). Section4 describesa modified
Ant Colony Optimisationalgorithmpre-optimisingdecen-
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Figure 1. An aluminium panel with
�

cells.

tralised inspections,while Section5 introducesthe em-
ployedmetricsandpresentstheexperimentalresults.

2 AAV Concept Demonstrator

Theprimaryprinciplethat is followedin theAAV work
is theemergenceof a global responseasa resultof interac-
tionsinvolving transferof local information.Thisapproach
attemptsto completelyavoid or reducethe numberof sin-
gle points-of-failure, leadingto robust impactsensingnet-
works. The secondimportantprinciple is scalability with
respectto manufacturingnew or repairingdamagedmod-
ulesor “cells”. TheAAV-CD consistsof cells,thatnotonly
form aphysicalshellfor anaerospacevehicle,but alsohave
sensors,logic, and communications.Currently, eachcell
containsa small numberof passive piezoelectricpolymer
sensorsbondedto analuminiumskin panelin orderto de-
tecttheelasticwavesgeneratedin thestructureby impacts.
At the moment,the structureof the AAV-CD is a hexago-
nal prism. A modularaluminiumframeis coveredby �����
mmx ����� mm, � -mmthick aluminiumpanelsthatform the
outerskin of the structure.Eachsuchpanelcontainsfour
cells(Figure1), andeachof thesix sidesof theprismcon-
tainseightof thesepanels,so theentireAAV-CD contains�	�

panelsand ��
�� cells. Eachcell alsocontains� digital
signalprocessors,oneof which acquiresdatafrom thesen-
sors,while theotherrunstheagentsoftwareandcontrolsthe
communicationswith its neighbouringcells. Importantly, a
cell communicatesonly with

�
immediateneighbours:the

AAV-CD doesnot employ centralisedcontrollersor com-
municationrouters. Single cells may detectimpactsand
triangulatetheir locations,while collectionsof cells may
solve morecomplex tasks;for example,produceanimpact
boundarywith desiredcharacteristics[14] or animpactnet-
work [17] to pre-optimiseinspectionsandrepairs.

DecentralisedinspectionacrosstheAAV network array
may requirean impactnetwork— a robust reconfigurable

network connectingremoteAAV cellsthatbelongto a spe-
cific class,e.g.,thecells that registeredimpactswith ener-
gieswithin acertainband(non-criticalimpacts)[17,1]. The
self-organisingimpact networks createan adaptive topol-
ogyallowing inspectionagents(communicationpacketsor,
potentially, swarming robots) to quickly explore the area
andevaluatethedamage(e.g.,identify densitiesof impacts
typical for a meteorshower) — particularly, wherea num-
ber of individually non-critical damagesitesmay collec-
tively leadto a moreseriousproblem.Roboticagentsmay
needanimpactnetwork which solvesa travelling salesper-
sonproblem(TSP).On the otherhand,a shortestor mini-
mumspanningtree is often requiredin orderto enablede-
centralisedinspectionswith virtual (software)agents.

Let us define the AAV impact network. The two-
dimensionalAAV arraycanberepresentedby aplanargrid
graph � : the product of path graphson � and 
 ver-
tices ������� , which arepointson the planarinteger lattice,
connectedby the edges������� at unit distances(Figure2).
Given a numberof non-critical impacts,all cells that have
detectedthesenon-critical impactscan be representedby
a subset� of ������� . We needto identify thoseedges� in
������� whichconnecttheverticesin � minimally, sothatthe
total distance(a sumof unit distancesassignedto edges� )
is shortest.This problemis, essentially, thestandardmini-
mumspanningtree(MST) problem,exceptthata spanning
treeis definedfor agraph,andnot for asetof vertices.Our
problemis sometimesreferredto in literatureastherectilin-
ear minimum (terminal-) spanningtree (RMST) problem,
while theverticesin � arecalledterminals,andis a funda-
mentalproblemin VLSI design[9]. The importantdiffer-
encebetweenMST andRMST is that ratherthanchoosing
MST edgesout of thegraphedges������� directly connect-
ing pairsof vertices,we needto find multi-edgerectilinear
pathsbetweenverticesin � , minimising thetotal distance.
In other words, we needto definean auxiliary complete
graph � , whosevertex set is � andin which the edge���
for ����� �!� with �#"$ � haslengthequalto the Manhat-
tan distancebetweennodes� and � . The graph� is not a
grid graph— it is anabstractionusefulonly to formalisean
impactnetwork. After a standardMST, �&% , is identifiedin
� , we merelyneedto convert all edgesin � % to rectilinear
pathson thegrid graph� (Figure2).

The impact network problemis complicatedby possi-
ble “obstacles”createdby discontinuitiesin the AAV grid
graph� . Initially, the grid graph� is solid — it doesnot
have any “holes” — so its complementin the infinite or-
thogonalplanar grid is connected. New critical impacts
may createsuchholesin the grid. Figure2 illustratesthe
RMST problemwith two scenarios.Thefirst caseis shown
in thetop part,andinvolvesthreeedgesanda simpleMST,
� % . Thesecondcaseis shown in thebottompart:somecells
aredestroyed(thecorrespondingverticesareremoved),and
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Figure 2. Three impact nodes are sho wn in
black. The top-left figure sho ws a complete
auxiliar y graph � (dashed lines) with ' edges.
The conversion of its MST to rectilinear paths
is sho wn in the top-right figure (dashed
edges). Two lower figures sho w the graph
with some ver tices remo ved: the bottom-left
figure sho ws an updated auxiliar y graph � ,
and the bottom-right figure sho ws conversion
of the new MST to rectilinear paths.

theauxiliarycompletegraphshouldbeupdatedbecauseone
shortestpathhaschanged.This requiresa re-computation
of its MST, with anotheredgebeingselectedandconverted
to a rectilinearpath.Therefore,anew obstaclemaynot just
requirethat a new shortestpath is found betweenthe two
involvedcells(theprobleminvestigatedby Wu et al. [21]),
but ratherthat the whole MST is re-evaluated. Moreover,
therearecaseswhena terminal is no longerneededto be
includedin theRMST, or anew terminalneedsto beadded.

Thus, from a graph-theoreticstandpoint,the represen-
tation of the impact network problemchangesover time
due to insertionof new nodes(e.g., non-critical impacts)
or deletionof old nodesno longerfitting the impactrange,
while theproblem’s propertieschangedueto varyingcon-
nection costs (e.g., critical impacts destroying existing
paths).In short,weneedadynamicanddecentralisedcom-
putationof a rectilinearminimumterminal-spanningtreein
the presenceof obstacles.If the information (suchas the
auxiliary graph� ) wasavailablein onecentralpoint, then
RMST problemwould essentiallybecomeMST problem,
with a subsequentconversionto rectilinearpaths. In our
case,the auxiliary graph � is not even known at any sin-
gle node/cell. So, on the onehand,the desiredalgorithm
shouldbebothdecentralisedandfully dynamic(bothinser-
tions anddeletionsmustbe handledonline), while on the
otherhand,our main concernis the communicationover-
headof determiningthedesiredtopology.

Our ultimategoal is to develop andverify the method-
ology for evolving suchalgorithms— in otherwords,we
should investigate not only algorithmic details, but also
evaluationmetricsidentifying distinct phasesin algorithm
performance.Thesemetricscanserve asfitnessfunctions,
identifying critical parameters[18] andguiding the design
towardsdesiredobjectives.

3 Background and Motivation

Self-organisationis typically definedastheevolution of
a systeminto an organisedform in the absenceof exter-
nal pressures.For example,a self-assemblyof network-
like structuresconnectinga setof nodeswithout usingpre-
existing positionalinformationor long-rangeattractionof
the nodesis describedby Schweitzerand Tilch [15] us-
ing Brownianagentsthatarecapableof producingdifferent
local chemicalinformationandrespondingto it in a non-
linearmanner. Theseagentssolve two tasksin parallel: (i)
thedetectionof theappropriatenodes,and(ii) theestablish-
mentof stablelinks betweenthem.A concreteanddetailed
implementationof fault-tolerantcircuit synthesison a self-
configurablehardwareplatformis providedby theCell Ma-
trix approach[5]. The approachemploys local nodes(Su-
percells),performingfaultdetection,fault isolation,config-
urationof new Supercells,determinationof inter-cell wiring
paths,andimplementationof thefinal desiredtargetcircuit.

In general,self-organisingsolutionsdependonselection
pressureswhich, through their contribution to the evolu-
tionaryfitnessfunctions,constraintheemergentbehaviour.
One example of a genericselectionpressureis the spa-
tiotemporal stability of emergent patterns: arguably, any
patternhas to be stablebefore exhibiting anotheruseful
task-orientedfeature.Theuseof spatiotemporalstability in
evolving AAV impactboundaries(continuouslyconnected
multi-cellular circuits, self-organising in presenceof cell
failuresandconnectivity disruptionsarounddamagedareas)
is describedin [7, 14, 18], employing information-theoretic
andgraph-theoreticmeasuresin separatingchaoticregimes
from ordereddynamics.

The information-theoretictemporal AAV metric cap-
tured the diversity of rules invoked by AAV cells during
an impact boundaryformation, and was modelledon the
classificationof a cellularautomata(CA) rule-space,char-
acterisedwith theShannonentropy of therules’ frequency
distribution[20]. Theinput-entropy settlesto fairly low val-
uesfor ordereddynamics,but fluctuatesirregularly within
anarrow highbandfor chaoticdynamics.For complex CA,
orderandchaosmay predominateat different timescaus-
ing the entropy to vary. A measureof the variability of
the input-entropy curve is its varianceor standarddevia-
tion, calculatedover time. Complex dynamicsexhibitshigh
varianceof input-entropy, pointingto a phasetransitionbe-
tweenchaosandorder.
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Thegraph-theoreticspatialAAV metriccapturedtheim-
pactboundary’s connectivity in termsof thesizeof theav-
erageconnectedboundaryfragment— an analogueof a
largestconnectedsub-graph(LCS) and its standarddevi-
ation over time. The parameterdriving the dynamicswas
a lengthof communicationhistory ( allowedto bekeptby
eachAAV cell. Accordingto therandomgraphstheory[6],
critical changesareexpectedto occur in connectivity of a
directedgraphasthe numberof edgesincreases.The size
of the LCS rapidly increasesaswell andfills mostof the
graph,while the variancein the sizeof the LCS reachesa
maximumat somecritical point beforedecreasing.Simi-
larly, an impact boundaryis highly disconnected(chaotic
phase)whentheparameter( is below its critical value (*) ,
variesin connectivity widely (the “edge of chaos”)when
the parameter( reachesits critical value (*) , andbecomes
well-connected(theorderedphase)when (,+!(*) . In other
words,only complex dynamicsexhibits high variance,and
thepeakof this variancepointsto aphasetransition[14].

Network connectivityis, then, anotherexample of an
independentselectionforce rewardingspecificmulti-agent
network topologies. This force, we believe, is relatedto
both efficiency and robustness,which were identified in
[16] ascritical measuresunderlyingoptimalnetwork struc-
tures. A very promising direction was investigated by
Wright et al. [19] who designeda measureof emergence
of multi-agentswarming/flockingbehaviour asopposedto
both fully coordinated“crystalline” behaviour and totally
uncoordinateddynamicsof independentparticles.Thepro-
posedmeasure- estimatesthelevel of self-organisationvia
approximationof thedynamicalsystem’s characteristicdi-
mension— i.e.,by determininghow well aswarm/flockcan
bedescribedasasinglebody.

Typically, the metrics targeting temporalstability and
spatial connectivity require a global view: full informa-
tion on eithercells’ states(to determinetheir diversity) or
their inter-connections(to determinesub-graphconnectiv-
ity). Our specificgoal,however, is a metric that canwork
with partial information, obtainedlocally. For example,
a singletemporallystableor a spatiallyconnectedbound-
ary fragmentis clearly insufficient to claim that the whole
structureis stableor connected. We intend to show that
the first steptowardsa localisablemetric canbe provided
by a metric operatingnot within AAV multi-cellular rule-
spaceor on thesurfaceof theAAV graph,but ratherwithin
theinter-agentcommunicationspace.Beforedescribingthe
new metric,however, weneedto review somedetailsof the
localisedalgorithmthatproducestheimpactnetworks.

4 Adaptive Impact Networks

The RMST problemon the AAV skin changesconcur-
rently with the problem-solvingprocess,suggestingthat
it can be efficiently tackledby Ant Colony Optimisation

(ACO) algorithms, proposedand enhancedover recent
yearsby Dorigoandhiscolleagues[2, 3, 4], ratherthandis-
tributeddynamicprogramming(Bellman-Ford)algorithms,
or reinforcementlearningtechniquessuchasbacktracking.
An overview of theACO meta-heuristicandits applicabil-
ity canbefoundin [4]. Essentially, theACOalgorithmsuse
the ability of agentsto indirectly interactthroughchanges
in theirenvironment(stigmergy) by depositingpheromones
andformingapheromonetrail. They alsoemploy aform of
autocatalyticbehaviour — allelomimesis: the probability
with whichanantchoosesa trail increaseswith thenumber
of antsthatchosethesamepathin thepast.Theprocessis
thuscharacterisedby apositive feedbackloop [3].

In the AAV-CD the antsareimplementedascommuni-
cationpackets,so the policiesareimplementedvia appro-
priatemessagepassing,wherethecellsareresponsiblefor
unpackingthe packets, interpretingthem,andsendingup-
datedpacketsfurther if necessary. Thus,antscannotmove
into thecellswith damaged(or shutdown) communication
links, so critically-impactedcells form obstacles,and the
antsaresupposedto find theshortestpathsaroundthemus-
ing positively reinforcedpheromonetrails. For ourproblem
it is impracticalto usetwo typesof pheromone(e.g., the
“nest” and “food” pheromones)becauseeachimpact cell
(node)servesbothasa “nest” anda “food” source.There-
fore, having two typesof pheromonepernodewould have
createdmultiplepheromonefields,combinatoriallycompli-
catingthe network. In addition,dissipationof pheromone
over largedistancesis not practicaleither, asit would lead
to “flooding” of thenetwork with messages.Hence,theal-
gorithmsdevelopedfor theAAV network useonly onetype
of non-dissipative evaporatingpheromone.

The algorithmpresentedin [17, 1] wasbasedon a hy-
brid methodof establishingimpactnetworks,usingasingle
impactgradientfield (IGF) anda deadreckoning scheme
(DRS),complementingtheautocatalyticprocessof ant-like
agents.Following [14], we summariseherea mainvariant
of thisalgorithm,withoutanIGF, andrelyingonly onDRS.
Thebehaviour of exploringantsincludesthefollowing:

(E1) each impactnodegenerates. $ � exploring ants
every / $ ��� cycles;each ant hasa “time to live” counter021 $ ��3�3 , decrementedeverycycle;

(E2) an exploring ant performsa randomwalk until ei-
ther a) anotherimpactnodeis found,or b) theant hasre-
turnedto thehomeimpactnode, or c) theantcanmoveto a
cell with a non-zero trail intensity;

(E3) if an exploring ant can move to a cell with a non-
zero trail intensity, thedestinationcell is selectedaccording
to transitionalprobabilities[14];

(E4) at each stepfrom cell 4 to cell 5 , an exploring ant
updatesthex- andy-shift coordinatesfromthehomenode
(initially setto � ).
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The parameters.6��/7� 021 may vary, and the frequency
.689/ , in particular, hasan effect on convergenceand the
communicationoverhead[1]. The DRS requiresthat each
antremembersthex- andy-shift coordinatesfrom thehome
node. Thesecoordinatesare relative, they simply reflect
how many cells separatethe ant from the homenode in
termsof : and ; at the moment,and shouldnot be con-
fusedwith atabu list of anACOagentcontainingall visited
nodesin termsof someabsolutecoordinateor identification
system. The DRS enablesthe agentsto headhomewhen
anotherimpactnodeis located,usingthefollowing rules:

(R1) whenanotherimpactnodeis found,the exploring
antswitchesto a returnstate, remembers theratio < $ ;=89:
correspondingto the foundnode’s coordinatesrelative to
thehomenode, andstartsmovingback to thehomenodeby
moving to cells where the y- and/or x-shift coordinates(s)
wouldbesmallerandtheir ratio wouldbeascloseaspos-
sible to < ; if both x- and y-shift are zero (the homenode),
thereturningant stops;

(R2) if the cell suggestedby the DRS(minimisationof
x- and/or y-shift, while maintaining < ) cannotbe reached
becauseof a communicationfailure (an obstacle),the ant
selectsan obstacle-avoidingmoveaccording to the transi-
tional probabilities[14]; uponthis selectionthe ant keeps
to the chosenpath until the obstacleis avoided,as recog-
nisedbycomparisonof current ;>8?: ratio with < ;

(R3) each cycle, a returningant depositspheromonein
the quantity inverselyproportional to the traversedreturn
distance� (� is incrementedby � each cycle);thedeposited
pheromoneis limitedbya pre-definedmaximum@BABCED .

The pheromone is deposited on the cells them-
selves rather than communicationlinks — we deal with
pheromonetrail intensities@GF at thecell 5 . Eachcell stores
an ant-routingtable,usedin determiningwhich neighbour
cell shouldbe chosenby an incoming ant packet to con-
tinuetheir travel. At any giventime point H , theant-routing
tableI	JLK F ��HE� of node4 with respectto all its neighbornodes
5 , containedin the neighbourhoodM J , is proportionalto
pheromoneintensities@NFO��HE� . The intensity of trail @NFO��HE�
onthenode5 givesinformationonhow many antshavetra-
versedthenodein thepast,andis updatedeachtime anant
agentP passesthroughthenode:

@ F ��HE� $ ��4�
*��@ F ��HE��QSR
1

� 1 ��HE� ��@ ABCED �9�

where R
1 is a constantquantity specifiedfor eachgener-

atedant P , � 1 is the distancetraversedby the ant P , and
@ ABCED is a limit onpheromonetrail intensity. Intuitively, the
quantity R

1 representsa pheromonereserve of the ant P ,
consumedduringthereturntrip (notunlike thewell-known
ANT-quantityscheme).At thebeginningof eachcycle, the

pheromoneevaporatesat therateTU�V�W�X�Y��� :

@ F ��HE� $ �W�[Z\T	�]@ F ��HE� $_^ @ F ��HE�`�

wherêa$ �[Z\T is thepheromoneretentionrate.
An improvement to the DRS algorithm included an

adaptivepheromonereserve quantity R
1 and a “time to

live” counter 021 . The pheromonereserve is adaptively
allocatedby the generatingnode, basedon the ants re-
turnedto the nodein the past: R

1 $ �bIX:c��d>e�f�g� R A J h � ,where f� is the minimal distancetraversedby the returned
ants, d>e is a scalingfactor, and R A J h is a lower limit for
the pheromonereserve allocatedfor an ant. Analogously,0 1 $ �b4�
`��d�ijf�	� 0 ABCED � , where0 ABCED is an upperlimit for
thecounter, and d i is a scalingfactor. TheAdaptive Dead
Reckoning Scheme(ADRS) contributesto a fasterrecon-
figurationof trailsandminimumspanningtrees.

The DRS algorithmproducesminimum spanningtrees,
resultingin reconfigurableimpactnetworks, andperforms
well in dealingwith two well-known problems:theblock-
ing problem and the shortcutproblem. Blocking occurs
whena trail that wasfound by the antsis no longeravail-
able due to obstacle(s)and an alternative trail is needed.
The shortcutcorrespondsto a new shortertrail becoming
availabledue to repairedcells. In this sectionwe present
a local heuristic(the “pause”heuristic),which contributes
to a betterconvergenceof theDRSalgorithm. Let uscon-
siderprobabilisticdecisionsof a returningant in thesitua-
tion whenanobstacleblocksaDRSpathtowardsthehome
node.TheDRSalgorithmusesonly onetypeof pheromone
(the “impact” pheromone). For example,a returningant
facingan obstacleaheadandexcluding a backtrackpossi-
bility hasa 3��28k3�� chanceof turning left or right, whenthe
trails arenot yet established.Choosinga directionat this
decisionnoderesultsin the ant depositingthe pheromone
eitheron the left or the right node. Clearly, this depositis
not an informedchoice,beingdriven by a 3��X8l3�� chance,
andmayin factobscurethepheromonetrail. Theupdateof
thepheromoneon both left andright nodesshould,in fact,
bedoneonly by theantsgoingin theoppositedirection,as
theseantshave traversedanalternative path.This dilemma
is not presentwhentheantsusetwo typesof pheromones.
A simplesolutionenhancingtheDRSalgorithm,usingonly
onepheromonetype,is providedby the“pause”heuristic:

(R4) an ant, facingan obstacleat cycle H andmakinga
transitionto thenext node, doesnotdepositanypheromone
at cycleH`Q!� , resumingdepositsonly fromcycleH`Q!� .
The “pause”heuristicinitially producesgapsin the trails,
next to eachdecisionpoint (Figure3). However, thesegaps
are eventually filled by the antsgoing in the oppositedi-
rection, leadingto the reinforcementof the shortesttrail.
Figures3 and4 illustratethis dynamicswith snapshotsof
thesimulatedAAV-CD network array.

5



Figure 3. White cells detected non-critical im-
pacts. An initial ver tical trail is destr oyed
by a horizontal obstac le (seven cells are re-
moved). The returning ants explore two alter -
native possibilities. The gaps in both trails
form next to each decision node .

Figure 4. A shor ter trail is estab lished.

5 Complexity Metrics and Experiments

The “global-view” or macro-level analysis of ACO-
ADRS algorithm convergenceis basedon the conceptof
a connectedtrail-fragment(CTF) — an obvious analogue
of a connectedsub-graph.A CTF is a set m of cells with
@onap (wherep is a given threshold),suchthatevery cell
in m is connectedwith at leastoneothercell in m , andthere
exists no cell outsidem which is connectedto at leastone
cell in m . Tracingtheaveragesize q of CTFsandits vari-
anceR

i over time allowedus to identify emergenceof the
shortestpathasaphasetransitionin network connectivity.

We carried out ��� experimentsfor eachvalue of the
pheromoneretentionrate ^ in the rangebetween�2r � � and
�2r 
�
 . During eachexperiment,a simplestraighttrail was
initially formedbetween� impacts,andthenbrokenat cy-
cle ����� by anobstacle.As before,we calculatedtheaver-
agesizeof CTF’s in impactnetworks, q[� ^ � , at eachtime-
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Figure 5. A chaotic phase (fragmentar y trails)
is separated by the edge of chaos (fir st maxi-
mum at ^#$ �Xr 
 � ) from the fir st ordered phase
(stab le shor t trails at ^ut �Xr 
�v ); with another
phase transition to combined trails (̂ +#�2r 
 � ).

point, andits standarddeviation, R �
^ � , over time. Theex-

pectedthreetypesof dynamics:chaotic,complex, andor-
deredwereobserved. Two “ordered” phasesareobserved
(Figure 5): the first (and the one we are interestedin) is
the emergenceof the stableshortertrail aroundthe obsta-
cle as opposedto the longer trail, followed by the emer-
genceof bothstabletrailsaroundtheobstacle(with ahigher
combinedlength). The first “ordered” phaseis separated
from thechaoticphase,̂uw �2r 
 � , by the“edgeof chaos”,^ �Vx �Xr 
 � �Y�2r 
�v?y , andis identifiedby theminimumof R �

^ � ,
at the retentionrate ^zt �Xr 
�v . Thereis another(“edgeof
order”) region of complexity, ^{t �Xr 
�| , precedingthesec-
ond“ordered”phaseat very high retentionrateŝ +}�Xr 
 � .
This phaseis of no interest: at suchratesthereis enough
pheromoneto supportmany trails.

Thus,the spatialmetric R �
^ � suggeststhat, in termsof

solving the blocking problem,the optimal pheromonere-
tention rate ^ can be identified as the one which attains
theminimumof thestandarddeviation R �

^ � , following the
“edgeof chaos”pointedto by thefirst maximumof R �

^ � , as
we increasê . In otherwords,well-connectedimpactnet-
worksemerge in theorderedphase,characterisedby mini-
mal R �

^ � andlowerentropy of thenetwork.
Self-organisationmay seemto contradict the second

law of thermodynamicsthat capturesthe tendency of sys-
tems to disorder. The “paradox” has beenexplained in
termsof multiple coupledlevels of dynamicactivity (the
Kugler-Turvey model [10]) — self-organisationand the
loss of entropy occursat the macro-level, while the sys-
tem dynamicson the micro-level generatesincreasingdis-
order. One convincing example is describedby Parunak
and Brueckner[11] in context of pheromone-basedcoor-
dination. Their work definesa way to measureentropy at
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the macro level (agents’behaviours lead to orderly spa-
tiotemporalpatterns)andmicro level (chaoticdiffusion of
pheromonemolecules). In other words, the micro level
serves as an entropy “sink” — it permitsthe overall sys-
tementropy to increase,while allowing self-organisationto
emerge andmanifestitself ascoordinatedmulti-agentac-
tivity on themacrolevel. Anotherexamplerelatesamacro-
level increaseof coordinationpotentialwithin amulti-agent
team,indicatedby a macro-level decreasein epistemicen-
tropy of agents’joint beliefs,with a micro-level increasein
the entropy of the multi-agentcommunicationspace[13].
Similarly, we intend to show that the emergenceof well-
connectedimpactnetworks,indicatedby theminimal vari-
anceof their fragments(an approximationof the network
heterogeneity),is explainedby increasedirregularity on a
micro-level. This micro-level is the communicationspace
wheretheinter-agentmessagesareexchanged.

A characterisationof themicro-level (theentropy “sink”)
canbeobtainedif oneestimatesthe“regularity” of thecom-
municationspace.Let ~ J ��HE� denotethenumberof antpack-
etsreceivedby thecell 4 at time cycle H . Thentheaverage
loadcarriedby thecell 4 is givenby ~GJ $��o�%��ce ~GJ���HE�98k- ,
where - is the total numberof cycles. The regularity of
the series~GJ���HE� canbe measuredwith the auto-correlation
functionof anintegerdelay0 :

d J � 0 � $
� �%��	�l�ce x ~ J ��H*Z 0 �cZ ~ J y>x ~ J ��HE�cZ ~ J y

���%��ce x ~ J ��HE�>Z ~ J y i
r

The auto-correlationfunction is equivalent to the power
spectrumin termsof identifying regularpatterns— a near-
zero auto-correlationacrossa rangeof delayswould in-
dicatehigh irregularity, while auto-correlationwith values
closeto one indicatevery high regularity. The following
inverseaverageis a goodapproximationof thetotal irregu-
larity, or volume-per-channelcomplexity, onthemicro-level
(thecommunicationspace):

� � 0 � $ ��o�J �ce d J � 0 �
�

where � is the numberof cells. It is important to re-
alise that the volume-per-channelcomplexity metric

� � 0 �
is a more refinedmeasurethan a similar statistic ��� 0 � $
�289dg��� 0 � , for a joint series�G��HE� of all ant packetsreceived
by all � cells at time cycle H , where d � � 0 � is the auto-
correlationfunction for the joint series�N��HE� . The differ-
encebetween

� � 0 � and ��� 0 � is that the former estimates
the regularity of the communicationchannelemployed by
eachcell d J � 0 � andtheninvertsthe averageover all chan-
nels, while the latter is definedin termsof the regularity
of the entirecommunicationspaced � � 0 � . Our conjecture
is that the highestirregularity on the micro-level,

� � 0 � ^ �
over the rangeof possiblevaluesof 0 , correspondsto the
lowestvarianceon themacro-level, theminimal R �

^ � , and
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Figure 6. The median
� �W���2� ^ � metric. The

maxim um at ^�t �2r 
�v identifies the most irreg-
ular comm unication space , pointing to emer-
gence of well-connected impact netw orks.

indicatesthe observed distinct phasesaswell. The plot of
themedian

� �W���X� ^ � calculatedduring theexperimentsfor
eachvalueof thepheromoneretentionratê �Vx �Xr � �X�Y�2r 
�
?y
is shown in Figure6. As expected,themaximumis attained
at ^�t �Xr 
�v , pointing to the most irregular communica-
tion spaceandindicatinga phasetransitionin thecommu-
nicationspace.This retentionrateis the rateat which im-
pact networks becomewell-connected,also identified by
the spatial metric R as the orderedphase. Furthermore,
the point ^�t �Xr 
 � indicatesthe beginning of the move
towardsthe secondorderedphasein the parameter-space
wheretheimpactnetworksincludeall possibletrails. Infor-
mally, themost“irregular” communicationspace,measured
by the micro-level metric

�
, correspondsto the most “co-

ordinated”,well-connected,phaseof impactnetworks. A
potentialadvantageof the

�
metric over the spatialmetric

R is, however, its possibilityto becomelocalised.It maybe
possibleto meaningfullycalculate

�
over a subsetof com-

municationchannels,while measuringpartial connectivity
of animpactnetwork is lesslikely to succeed.

6 Conclusions

In this paper, we consideredemergenceof an impactnet-
work pre-optimisingdecentralisedinspectionson an AAV
skin, using an ACO algorithm enhancedwith the adap-
tive deadreckoning and pauseheuristics. The modified
ACO-ADRSalgorithmis deployedin theAAV-CD andro-
bustly solves blocking and shortcutproblems,producing
rectilinearminimumspanningtreesfor impactsensingnet-
works. This algorithmexemplifiesdynamicdecentralised
algorithmssolvingSHM tasksvia self-organisation,andwe
appliedtwo metricsto evaluatetheemergentsolutions.The
spatialmetric, R �

^ � , measuresthe quality of impact net-
works on the macro-level throughthe connectivity of re-
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sultantspanningtrees.Thevolume-per-channelcomplexity
metric,

� � ^ � , verifies the solutionon the micro-level (the
multi-agentcommunicationsspace),andsuggestsa way to
developmetricsbasedonly onpartialinformation— local-
isablemetrics.

While we have not evolved parametersfor the ACO-
ADRS algorithm, the observed phasetransitionsclearly
identify thecritical valuesthatwould bechosenasa result
of selectivepressures(spatialstabilityand/orcomplexity of
communicationspace)— for example,by a geneticalgo-
rithm rewardingstablepheromonetrails or irregular com-
municationpatterns.This is asubjectof futurework.
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