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Abstract. We review disruptive innovations introduced in the RoboCup
2D Soccer Simulation League over the twenty years since its inception,
and trace the progress of our champion team (Gliders). We conjecture
that the League has been developing as an ecosystem shaped by diverse
approaches taken by participating teams, increasing in its overall com-
plexity. A common feature is that different champion teams succeeded
in finding a way to decompose the enormous search-space of possible
single- and multi-agent behaviours, by automating the exploration of
the problem space with various techniques which accelerated the soft-
ware development efforts. These methods included interactive debug-
ging, machine learning, automated planning, and opponent modelling.
The winning approach developed by Gliders is centred on human-based
evolutionary computation which optimised several components such as
an action-dependent evaluation function, dynamic tactics with Voronoi
diagrams, information dynamics, and bio-inspired collective behaviour.

1 Introduction

Agent Smith: “You can’t win, it’s pointless to keep fighting!

Why, Mr. Anderson? Why do you persist?”

Neo: “Because I choose to.”

The Matrix Revolutions.

The first official RoboCup was held in 1997, proposing a new benchmark
for Artificial Intelligence (AI) and robotics. Incidentally, another classical AI
challenge was successfully met in May 1997 when IBM Deep Blue defeated the
human world champion in chess. By design, RoboCup and chess differ in a few
key elements: environment (static vs dynamic), state change (turn-taking vs
real-time), information accessibility (complete vs incomplete), sensor readings
(symbolic vs non-symbolic), and control (central vs distributed) [1]. These dif-
ferences are emphasised in the RoboCup 2D Soccer Simulation League [2], which
quickly gained prominence, becoming one of the largest RoboCup leagues.

In this league, two teams of 12 fully autonomous software programs (called
“agents”) play soccer in a two-dimensional virtual soccer stadium (11 player
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agents and 1 coach agent in each team), with no remote control. Each player
agent receives relative and noisy input from its virtual sensors (visual, acoustic
and physical) and may perform some basic actions in order to influence its en-
vironment, e.g., running, turning and kicking the ball. The coach agent receives
perfect input but can communicate with the player agents only infrequently and
through a fairly limited channel. The ability to simulate soccer matches with-
out physical robots abstracts away low-level issues such as image processing and
motor breakages, allowing teams to focus on the development of complex team
behaviours and strategies for a larger number of autonomous agents [3, 4].

A simulated game lasts just over 10 minutes on average, and is played over
a small network of computer workstations which execute the code in parallel.
Each simulation step takes merely a tenth of a second, during which the entire
sensory-motor cycle takes place within an agent: starting with receiving new
sensory inputs from the simulator, proceeding to updating the internal memory,
to evaluating possible choices, to sending the chosen action back to the simulator.
The main challenge for each agent is to derive the best possible action to execute
at any specific time, while facing unexpected actions of the opposing agents.

Over 20 years, the RoboCup community has developed the open-source 2D
simulator and visualisation software which currently, with various packaged util-
ities and basic agent libraries, contains nearly a million lines of code. During this
period, the League and the participating teams have undergone several transi-
tions each of which eventually expanded the level of agents’ intelligence and their
behavioral complexity. In this paper we attempt to trace not only the ten-year
long progress of our own team from its first implementation (Cyberoos; partic-
ipated between 1998 and 2003) to the RoboCup-2016 champion team (Gliders;
competed first in 2012), but also put this trace in the context of the twenty-year
long evolution of the Sim2D League itself.

The conjecture we put forward is that the League has been developing as an
ecosystem with an increasing complexity shaped by different approaches taken
by participating teams. Furthermore, this evolving ecosystem has experienced a
series of salient transitions leading to emergence of qualitatively new properties
in the intelligence exhibited by the agents. By a transition we do not mean a mere
extension of some simulated capabilities, such as the introduction of goalkeepers,
heterogeneous player types, or a coach language. Instead, we associate a transi-
tion with a specific methodological advance which played the role of a disruptive
innovation, with wide-spread consequences affecting the entire “ecosystem”, for
example, a release of standard libraries, and so on. We use the term “disruptive
innovation” in a broad sense to indicate an innovation that creates a new ecosys-
tem (by analogy with a new market or value network), eventually disrupting an
existing system, displacing established structures and relationships.

2 A simulated world

The foundation supporting the evolution of the League is undoubtedly the con-
struction of the soccer server itself, providing a centralised world model with
several key features, enhanced over the following years:
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– distributed client/server system running on a network and producing frag-
mented, localised and imprecise (noisy and latent) information about the
environment (virtual soccer field) [5, 6];

– concurrent communication with a number of autonomous agents [7];
– heterogeneous sensory data (visual, auditory, kinetic) without a global vision,

and limited range of basic commands/effectors (turn, kick, dash, . . .) [8];
– asynchronous perception-action activity and limited window of opportunity

to perform an action [9];
– autonomous decision-making under constraints enforced by teamwork (col-

laboration) and opponent (competition) [10];
– conflicts between reactivity and deliberation [11].

The only restriction that was imposed from the outset is that participants should
“never use central control mechanisms to control a team of agents” [12].

A crucial feature making this simulated world an evolving “ecosystem” is
the availability of binaries (and sometimes the source code) of participating
teams, contained within an online team repository. The repository is updated
after each annual RoboCup competition, allowing the participants to improve
their teams with respect to the top teams of the previous championships. These
improvements diversify the teams’ functionality and explore the immense search-
space of possible behaviours in the quest for optimal solutions. This process
results in a co-evolution of the teams, raising the overall competition level.

3 Partial automation of development efforts

“AT Humboldt” from Humboldt University, Germany became the first champion
of the League at RoboCup-1997 (Nagoya, Japan). The team used a combination
of reactive and planning systems, successfully deploying its agents within the
simulated world.

The following couple of years passed under the domination of “CMUnited”
team from Carnegie Mellon University (USA) which took the championship in
1998 (Paris, France) and 1999 (Stockholm, Sweden). One of the key reasons
for this success was the development of several tools partially automating the
overall effort, such as an offline agent training module, and layered disclosure: a
technique for disclosing to a human designer the specific detailed reasons for an
agent actions (in run-time or retroactively). Layered disclosure made it possible
to inspect the details of an individual player’s decision-making process at any
point [13], becoming in our view the first disruptive innovation in the League.
Together with the offline agent training module, it clearly exemplified the power
of automation in accelerating the development effort — precisely because it en-
abled the design effort to reach into a larger part of the search-space by encoding
more diverse behaviours.

It is important to point out that there were other novelties introduced by
CMUnited-98 and CMUnited-99, such as “single-channel, low-bandwidth com-
munication”, “predictive, locally optimal skills (PLOS)”, “strategic positioning
using attraction and repulsion (SPAR)”, etc. [13], but we believe that it is the
partial automation of the software development that became the disruptive in-
novation. It has led to a wide-spread adoption of several debugging, visualising,
log-playing, log-analysing, and machine learning tools.
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4 Configurational space

A number of new teams in 2000 utilised the code base of the 1999 champi-
ons, CMUnited-99: it provided code for interaction with the soccer server, skills,
strategies, and debugging tools in a variety of programming languages [14]. The
champion of RoboCup-2000 held in Melbourne, Australia, “FC Portugal” from
University of Aveiro and University of Porto, extended this code base with a
systematic approach to describing team strategy, the concepts of tactics, forma-
tions and player types, as well as the situation based strategic positioning, the
dynamic positioning and role exchange mechanisms [15, 11].

The generic innovation underlying these mechanisms comprised the ability
to configure diverse single- and multi-agent behaviours. The range of these be-
haviours span from active (ball possession) to strategic (ball recovery), from
formations to tactics, and from individual skills to team strategies. Such diver-
sity resulted in a considerable configurational flexibility displayed by the winning
team, significantly increasing the software development productivity, and more
importantly, expanding the extent of the available behavioural search-space.

Not surprisingly, the expansion brought about by the larger configurational
capacity was further exploited by the introduction of a standard coach language
[16] enabling high-level coaching with explicit definition of formations, situations,
player types and time periods, and resulting in a high-level coordination of team
behaviour. In other words, a disruptive innovation again was delivered by a
method which allowed to access deeper regions of the available search-space.

Team “TsinghuAeolus” from Tsinghua University, China, which won the
next two championships (RoboCup-2001 in Seattle, USA, and RoboCup-2002
in Fukuoka), focussed specifically on increasing the agents’ adaptability via a
novel online advice-taking mechanism [17]. The configurational space was ex-
tended by a task-decomposition mechanism that assigned different parts of the
task to different agents.

A major boost to the League was provided by the partial release of the source
code of the next champion, team “UvA Trilearn” from University of Amsterdam,
The Netherlands, which won RoboCup-2003 in Padua, Italy [18]. This release
resulted in a standardisation of many low-level behaviours and world model,
effectively “locking in” the configurational space attained by that time, and
motivating several teams to switch their code base to UvA Trilearn base.

5 Cyberoos: 1998 – 2003

At this stage we take a brief look at our first team, Cyberoos, which partici-
pated in RoboCup competitions between 1998 and 2003. The Cyberoos’98 team
took 3rd place in the 1998 Pacific Rim RoboCup competition [19], while Cy-
beroos’2000 were 4th in the Open European RoboCup-2000 [9]. Despite these
regional successes, the team’s best result at the world stage was a shared 9th

place which Cyberoos repeatedly took at the RoboCup competitions in 2000,
2001, 2002 and 2003, never reaching the quarter-finals [20–23]. In hindsight, the
main reason for this lack of progress was an oversight of the main tendency
driving the innovations in the League: the exploration of the search-space due



From Cyberoos’98 to Gliders2016 5

to the automation of the development efforts and the standardisation of the
configurational space.

Instead, the approach taken by Cyberoos focussed on self-organisation of
emergent behaviour within a purely reactive agent architecture [21]. Only dur-
ing the later years the Cyberoos architecture diversified, and included semi-
automated methods that quantified the team performance in generic information-
theoretic terms [22, 23]. This approach focussed on measuring the behavioural
and belief dynamics in multi-agent systems, offering a possibility to evolve the
team behaviour, optimised under a universal objective function, within the
framework of information-driven self-organisation [24–26]. However, this frame-
work has started to take a functional shape only a few years later, after the time
when the Cyberoos team effort stopped in 2003.

6 Search-space decomposition

The next decade of RoboCup championships witnessed an intense competition
between three teams: “Brainstormers” from University of Osnabrück, Germany,
“WrightEagle” from University of Science and Technology of China, and “HE-
LIOS” from Fukuoka University and Osaka Prefecture University, Japan. Brain-
stormers became champions three times: in 2005 (Osaka, Japan), 2007 (Atlanta,
USA), and 2008 (Suzhou, China); WrightEagle came first an incredible six times:
in 2006 (Bremen, Germany), 2009 (Graz, Austria), 2011 (Istanbul, Turkey), 2013
(Eindhoven, The Netherlands), 2014 (Joao Pessoa, Brazil) and 2015 (Hefei,
China); and HELIOS succeeded twice: in 2010 (Singapore) and 2012 (Mexico
City, Mexico).

6.1 Machine learning

Brainstormers’ effort focussed on reinforcement learning methods aiming at a
universal machine learning system, where the agents learn to generate the ap-
propriate behaviors to satisfy the most general objective of “winning the match”.
Unfortunately, as has been acknowledged [27], “even from very optimistic com-
plexity estimations it becomes obvious, that in the soccer simulation domain,
both conventional solution methods and also advanced today’s reinforcement
learning techniques come to their limit – there are more than (108 × 50)23 dif-
ferent states and more than (1000)300 different policies per agent per half time”.

The high dimensionality of the search space motivated Brainstormers to
use a multilayer perceptron neural network [27]: a feedforward artificial neural
network which utilises a supervised learning technique called backpropagation
for training the network. Rather than developing a universal learning system,
Brainstormers succeeded in decomposing the problem into a number of individ-
ual behaviours (e.g., NeuroKick, NeuroIntercept, NeuroHassle) and tactics (e.g.,
NeuroAttack2vs2, NeuroAttack3vs4, NeuroAttack7vs8), learned with supervised
learning techniques.

Recently, there has been some renewed interest in backpropagation networks
due to the successes of deep learning. In our view, the potential of reinforcement
learning methods in RoboCup has not yet been fully realised, and deep learning
may yet to become a disruptive innovation for the Simulation league.
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6.2 Automated planning

WrightEagle team addressed the challenges of (i) high dimensionality of the
search space and (ii) the limited computation time available in each decision
cycle, by using Markov Decision Processes (MDPs). The developed framework
decomposes a given MDP into a set of sub-MDPs arranged over a hierarchical
structure, and includes heuristics approximating online planning techniques [28].
WrightEagle approach abandoned “the pursuit of absolute accuracy” and divided
the continuous soccer field into the discrete space, further subdividing it into the
players’ control areas according to geometric reachability. The resultant structure
enables automated planning, accelerating the search process and extending the
search depth [28].

6.3 Opponent modelling

“HELIOS” team [29, 30] followed a similar path, targeting a decomposition of
the problem space in developing an unsupervised learning method based on
Constrained Delaunay Triangulation (CDT) [31]. A Delaunay triangulation for
a set P of points in a plane is a triangulation D(P) such that no point in P
is inside the circumcircle of any triangle in D(P) (in CDT the circumcircle of
some triangles contains other triangles’ vertices). The method divides the soccer
field into a set of triangles, which provide an input plane region for Neural Gas
(NG) and Growing Neural Gas (GNG) methods. Specifically, the set Pb of N
points represents specifically chosen positions of the ball on the field, while sets
Pi describe the sets of coordinates of each player 1 ≤ i ≤ 11, so that there is
a bijective correspondence between Pb and each of Pi. Moreover, when the ball
takes any position within a triangle of D(Pb), each player’s position is computed
in a congruent way within D(Pi). During offline experiments or even during a
game, the behaviour of the opponent, for example, the players’ motion, directions
of the passes, and the overall team formations, can be mapped, analysed and
categorised [29, 30].

It is evident that the main reason behind the recurrent successes of all three
champion approaches is a dynamic decomposition of the problem space and its
subsequent efficient exploration. This innovation goes beyond a simple standard-
isation of low-level behaviours within a rich but static configurational space, by
employing automated learning and planning methods in a dynamic search.

7 Standardisation of “hardware”

An influential disruptive innovation arrived in 2010, when HELIOS team released
a major update of their well-developed code base [32]:

– librcsc-4.0.0 : a base library for the RoboCup Soccer Simulator (RCSS);
– agent2d-3.0.0 : a base source code for a team;
– soccerwindow2-5.0.0 : a viewer and a visual debugger program for RCSS;
– fedit2-2.0.0 : a team formation editor for agent2d.

This resulted in nearly 80% of the League’s teams switching their code base
to agent2d over the next few years. One may think of this phenomenon as a
standardisation of the simulated hardware, freeing the effort to improving the
higher-level tactical behaviours.
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8 Gliders (2012 – 2016): Fusing human innovation and
artificial evolution

We turn our attention to our champion team which won RoboCup-2016 (Leipzig,
Germany): Gliders [33–37]. Gliders2012 and Gliders2013 reached the semi-finals
of RoboCup in 2012 and 2013; Gliders2014 were runner-ups in 2014; Gliders2015
finished third in RoboCup-2015, and Gliders2016 (a joint effort of the University
of Sydney and CSIRO) became world champions in 2016.

RoboCup-2016 competition included 18 teams from 9 countries: Australia,
Brazil, China, Egypt, Germany, Iran, Japan, Portugal and Romania. Gliders2016
played 23 games during several rounds, winning 19 times, losing twice and draw-
ing twice, with the total score of 62:13, or 2.70 : 0.57 on average. In the two-game
semi-final round, Gliders2016 defeated team CSU Yunlu from Central South Uni-
versity (China), winning both games with the same score 2:1. The single-game
final against team HELIOS2016 (Japan) went into the extra time, and ended
with Gliders2016 winning 2:1. The third place was taken by team Ri-one from
Ritsumeikan University (Japan).

The 2016 competition also included an evaluation round, where all 18 par-
ticipating teams played one game each against the champion of RoboCup-2015,
team WrightEagle (China). Only two teams, the eventual finalists Gliders2016
and HELIOS2016, managed to win against the previous year champion, with
Gliders defeating WrightEagle 1:0, and HELIOS producing the top score 2:1.

The Gliders team code is written in C++ using agent2d-3.1.1 [32], and frag-
ments of source code of team MarliK released in 2012 [38].

In order to optimise the code, the Gliders development effort over the last
five years involved human-based evolutionary computation (HBEC): a set of evo-
lutionary computation techniques that rely on human innovation [39, 40].

In general, evolutionary algorithms search a large space of possible solutions
that together form a population. Each solution is a “genotype”: a complex data
structure representing the entire team behaviour encoded through a set of “de-
sign points”. A design point can be as simple as a single parameter (e.g., risk
tolerance in making a pass), or as complicated as a multi-agent tactical behaviour
(e.g., a conditional statement describing the situation when a defender moves
forward to produce an offside trap).

Some design points are easy to vary. For instance, a formation defined via
Delaunay Triangulations D(Pb) and D(Pi), 1 ≤ i ≤ 11, is an ordered list of
coordinates, and varying and recombining such a list can be relatively easily
automated. Other design points have an internal structure and are harder to
permute. For example, a conditional statement describing a tactic has a condition
and an action, encoded by numerous parameters such as positional coordinates,
state information, and action details. Once such a statement (a design point) is
created by human designers, its encoding can be used by evolutionary algorithms.
However, the inception of the tactic needs creative innovation in the first place,
justifying the hybrid HBEC approach.

The HBEC solutions representing team behaviours are evaluated with re-
spect to their fitness, implemented as the average team performance, estimated
over thousands of games for each generation played against a specific opponent.
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Some solutions are retained and recombined (i.e, the members of the popula-
tion live) and some are removed (i.e., die) through selection. Importantly, the
evolutionary process is carried out within different landscapes (one per known
opponent), and typically results in different solutions evolved to outperform spe-
cific opponents. In order to maintain coherence of the resultant code, each design
point is implemented with a logical mask switching the corresponding part of the
genotype on and off for specific opponents (determined by their team names).
This is loosely analogous to epigenetic programming [41].

The approach is aimed at constantly improving performance from one arti-
ficial “generation” to another, with team designers innovating and recombining
behaviours while the fitness landscape and the mutations are for the most part
automated. The performance of Gliders was evaluated on several supercomputer
clusters, executing on some days tens of thousands of the experimental runs
with different behaviour versions. It would be a fair estimate that the number of
such trials is approaching 10 million. The overall search-space explored by the
HBEC includes variations in both Gliders behaviour and opponent modelling.
The approach incorporates disruptive innovations of the past years, including
the standardisation of simulated “hardware” and several effective search-space
decompositions.

Specific variations included (i) action-dependent evaluation function, (ii) dy-
namic tactics with Voronoi diagrams, (iii) information dynamics, and (iv) bio-
inspired collective behaviour.

The approach introduced in Gliders2012 [33] retained the advantages of a
single evaluation metric (implemented in agent2d [32]), but diversified the eval-
uation by considering multiple points as desirable states. These desirable states
for action-dependent evaluation are computed using Voronoi diagrams which
underlie many tactical schemes of Gliders.

Starting from 2013, Gliders utilised information dynamics [42–47] for tactical
analysis and opponent modelling. This analysis involves computation of infor-
mation transfer and storage, relating the information transfer to responsiveness
of the players, and the information storage within a team to the team’s rigidity
and lack of tactical richness.

The constraints on mobility, identified by the information dynamics, were
investigated and partially overcome with bio-inspired collective behaviour [36].
Gliders2015 utilise several elements of swarm behavior, attempting to keep each
player’s position as close as possible to that suggested by a specific tactical
scheme, while incorporating slight variations in order to maximise the chances
of receiving the pass and/or shooting at the opponent’s goal. This behaviour
increased the degree of coherent mobility: on the one hand, the players are
constantly refining their positions in response to opponent players, but on the
other hand, the repositioning is not erratic and the players move in coordinated
ways.

These directions were unified within a single development and evaluation
framework which allowed to explore the search-space in two ways: translating
human expertise into new behaviours and tactics, and exhaustively recombining
them with an artificial evolution, leveraging the power of modern supercom-
puting. This fusion, we believe, produced a disruptive innovation on its own,
providing the winning edge for Gliders.
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9 Conclusion

In this paper we reviewed disruptive innovations which affected advancement
of the RoboCup 2D Soccer Simulation League over the twenty years since its
inception, and placed the progress of our champion team in this context. It is
important to realise that the neither of these processes has been linear, and many
ideas have been developing along a spiral-shaped trajectory, resurfacing over the
years in a different implementation. For example, the utility of evolutionary
computation supported by supercomputing has been suggested as early as 1997,
when a simulated team was developed with the agents whose high-level decision
making behaviors had been entirely evolved using genetic programming [48]. Yet
the complexity of the domain proved to be too challenging for this approach to
gain a widespread adoption at that time.

Without an exception, all the winning approaches combined elements of some
automation (debugging, machine learning, planning, opponent modelling, evolu-
tionary computation) with human-based innovation in terms of a decomposition
of the search-space, providing various configurations, templates and structures.
Is there still a way toward a fully automated solution, when the agents learn
or evolve to play a competitive game without a detailed guidance from human
designers, but rather by trying to satisfy a universal objective (“win a game”)?

On the one hand, the ability to run a massive number of simulated games
on supercomputing clusters producing replicable results will only strengthen in
time [4], and so may lend some hope in meeting this challenge positively. On the
other hand, the enormous size and dimensionality of the search-space would defy
any unstructured exploration strategy. A methodology successfully resolving this
dilemma may not only provide an ultimate disruptive innovation in the League,
but also provide a major breakthrough in the general AI research.
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