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Abstract—We analyze assortative mixing patterns of biological networks which are typically directed. We develop a theoretical

background for analyzing mixing patterns in directed networks before applying them to specific biological networks. Two new quantities

are introduced, namely the in-assortativity and the out-assortativity, which are shown to be useful in quantifying assortative mixing in

directed networks. We also introduce the local (node level) assortativity quantities for in- and out-assortativity. Local assortativity

profiles are the distributions of these local quantities over node degrees and can be used to analyze both canonical and real-world

directed biological networks. Many biological networks, which have been previously classified as disassortative, are shown to be

assortative with respect to these new measures. Finally, we demonstrate the use of local assortativity profiles in analyzing the

functionalities of particular nodes and groups of nodes in real-world biological networks.

Index Terms—Networks, graph theory, assortativity, systems biology, biological networks.
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1 INTRODUCTION

ASSORTATIVITY is the tendency observed in networks
where nodes mostly connect with similar nodes.

Typically, this similarity is interpreted in terms of degrees
of nodes. Many scale-free networks in real world show the
tendency where highly connected nodes link with other
highly connected nodes (that is, nodes mix assortatively).
The reverse is also true in some networks, where highly
connected nodes are more likely to make links with
isolated, less connected nodes, i.e., to mix disassortatively.
In both cases, the probability of creating a link depends on
the degrees of both nodes. Averaging across the network,
assortativity quantifies the tendency for preferential asso-
ciation within the network [1], [2], [3].

Recently, a new measure called local assortativity was
proposed to quantify mixing patterns at the node level of a
network [4], [5]. Specifically, local assortativity is defined as
a node’s contribution to network assortativity. It was shown
that local assortativity distributions could be constructed by
plotting average local assortativity against node degree, and
such distributions can be used to gain insights about the
topological design of networks. It was also shown that
naturally existing networks can be classified based on their
local assortativity distributions. Furthermore, the mechan-
isms and growth models that can produce each of these

local assortativity-based classes were analyzed [6]. In all of
the above mentioned works, local assortativity has been
defined and used for undirected networks.

Many naturally occurring networks, and biological net-
works in particular, are directed networks. Transcription
networks [7], neural networks [8], Gene Regulatory Net-
works (GRNs) [9], and brain (cortical) networks [10] fall into
this category. While assortativity of some biological net-
works, such as food webs, has been analyzed by consider-
ing them as undirected [2], we generally can get far better
insights about their topologies if their directedness is taken
into account. As we show in this paper, biological networks
that may appear disassortative, when directedness is not
considered, do in fact become assortative when they are
considered as directed networks. Furthermore, as we also
show, their local assortativity profiles are much more
informative when directedness is taken into account.
Therefore, it is necessary that a sound theoretical back-
ground is developed for analyzing assortativity and local
assortativity in directed networks. In this paper, we attempt
this task and use our results to analyze topological patterns
in directed biological networks.

Assortativity has been defined in [3] for directed net-
works as a correlation function, similar to the definition for
assortativity in the undirected case. However, the meaning
of this definition is not so sound. In the undirected case,
assortativity measures the tendency of a node to connect
with other nodes that have similar degree. In directed case,
the “in-degree” and “out-degree” of nodes come into play.
According to the definition in [3], the assortativity for
directed networks measures “the tendency of nodes to
connect with nodes that have in-degrees similar to (the
original) node’s out-degree.” It would make more sense if
assortativity instead measures the tendency for nodes to
connect with other nodes with similar out-degrees or
similar in-degrees. With this in mind, we propose alter-
native definitions for assortativity in directed networks.
Then we define and derive expressions for local assortativ-
ity in each case. We lay a sound background for these new
definitions by analyzing some canonical networks. Only
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after these steps, we can and do embark on analyzing
assortativity and local assortativity in real-world directed
biological networks, using the derived theory, and analyze
the significance of our results in terms of the functionality
and topology of the networks.

2 ASSORTATIVITY AND LOCAL ASSORTATIVITY

2.1 Review of Definitions and Terminology

It is necessary to review some existing concepts before we
formally define our measure for directed assortativity and
directed local assortativity. The concepts of degree distribu-
tion pðkÞ and excess degree (remaining degree) distribution
qðkÞ for undirected networks are well known [1], [2], [3].
The measures are related by

qðkÞ ¼ ðkþ 1Þ pðkþ 1ÞP
j jpðjÞ

; ð1Þ

where j; k are the excess degrees at each end of a given
link. When the upper limit of the sum over links is not
specified, the maximum excess degree Np � 1 is implied,
where Np is the maximum degree. The term

P
j jqðjÞ can be

understood as �q, the expected value or mean of the excess
degree distribution.

Given qðkÞ, one can introduce the quantity ej;k as the joint
probability distribution of the excess degrees of the two
nodes at either end of a randomly chosen link. ej;k is
symmetric for undirected networks, but not necessarily so
for directed networks. Assortativity of an undirected
network is defined as

r ¼ 1

�2
q

X
jk

jkðej;k � qðjÞqðkÞÞ
" #

; ð2Þ

where �q is the standard deviation of the excess degree
distribution of the network, qðkÞ.

A similar definition has been proposed for node-based
(i.e., vertex-based) assortativity coefficient in directed net-
works [3]. For this purpose, [3] considered the distribution
of finding a target node with in-degree k at the end of a
randomly selected link, qinðkÞ, and the distribution of
finding a source node with out-degree k at the start of a
randomly selected link, qoutðkÞ.

Also defined is the ej;k distribution for directed net-
works, where ej;k is now the probability that a randomly
chosen directed link leads into a node of in-degree j and out
of a node of out-degree k. If no degree-related preferential
mixing occurs, then ej;k ¼ qinðjÞqoutðkÞ for all j; k, and thus,
the assortativity coefficient can be defined via the diver-
gence between ej;k and qinðjÞqoutðkÞ:

rd ¼
1

�inq �
out
q

X
jk

jkðej;k � qinðjÞqoutðkÞÞ
" #

: ð3Þ

The latter can also be written as

rd ¼
1

�inq �
out
q

X
jk

jkej;k � �inq �outq

 !
; ð4Þ

where �inq and �outq are the means of the distributions qin and
qout, respectively. Similarly, �inq and �outq are the standard
deviations of the respective distributions.

2.2 Local Assortativity

Local assortativity for undirected networks can be defined
as follows [4], [5]:

� ¼
j jþ 1ð Þ k� �q

� �
2M�2

q

; ð5Þ

where j is the node’s excess degree k is the average excess
degree of its neighbors, and �q 6¼ 0. Following [4] and [5], we
now define local assortativity for directed networks. We
propose to define local assortativity as the contribution that
each node makes to the network assortativity, where network
assortativity is given by (4). That is, we need to determine
how much contribution each node makes to the term (4).

First of all, we point out that the degrees j and k in this
expression are understood to be the in-degree of the target
node jin and the out-degree of the source node kout,
respectively. We use k to indicate properties of “source”
nodes, and j to indicate properties of “target” nodes: this is
meaningful when considering a link ðj; kÞ. When considering
properties of any individual node, such as its in-degrees and
out-degrees, we stay with the notation kout for out-degrees
and jin for in-degrees, although this is not strictly necessary.
That is, kout and jout should be understood uniquely as out-
degrees, while kin and jin should both refer to in-degrees.

The distribution ej;k is the corresponding joint distribution
of out-degrees of the sources and in-degrees of the targets.

Second, following [4], let us consider the contribution of
each node to the term

P
jk jkej;k. Suppose, we visit all nodes

in a network, and in turn, from each node, we visit all links
that depart from that node, keeping the directionality of the
links in mind. In a network with N nodes and M links, the
total number of visits we will thus make will be M.
Suppose, we build up the probability distribution ej;k as we
make these visits. Each link will add a probability of 1

M to
the pair of ðjin; koutÞ, in accordance with the definition of
ej;k. Thus, each visit to a link will contribute jinkout=M to the
sum

P
jk jkej;k. Therefore, considering a node with out-

degree kout which is connected to nodes with in-degrees jin1 ,
jin2 ; . . . ; jinkout , it will contribute

�1 ¼
kout jin1
M

þ k
out jin2
M

þ � � � þ
kout jinkout

M
¼ kout

M

Xkout
i¼1

jini

to the sum
P

jk jkej;k. Let us denote the average in-degree of
a node’s neighbors as jin ¼ 1

kout

Pkout

i¼1 j
in
i . Then the individual

node’s contribution to the sum
P

jk jkej;k is

�1 ¼
kout

M

Xkout
i¼1

jini ¼
ðkoutÞ2 jin

M
:

An alternative definition is also possible, if we, in turn,
consider each node and all links that come into that node. In
this case, the contribution to the sum

P
jk jkej;k is

�2 ¼
ðjinÞ2 kout

M
; ð6Þ

where jin is the in-degree of the target node, kout is the
average neighbor out-degree, neighbors being those nodes
from which this node can be reached. Therefore, let us say that
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the “average” contribution �d of a node to the term
P

jk jkej;k
is the average of the above two quantities, �1 and �2,

�d ¼
ðkoutÞ2 jin þ ðjinÞ2 kout

2M
: ð7Þ

Finally, let us consider a node’s contribution to the term

�inq �
out
q . It can be seen that the expectation of distribution

qinðkÞ can be written in two equivalent forms:

�inq ¼
1

M

XM
m¼1

kinm ¼
1

M

XN
v¼1

�
kinv
�2
; ð8Þ

where kin is the in-degree of a source node of a given link m
(the first form), or the in-degree of a given source node v
(the second form). Similarly,

�outq ¼
1

M

XM
m¼1

koutm ¼
1

M

XN
v¼1

�
koutv

�2
; ð9Þ

where kout is the out-degree. The last two expressions lead to

�inq �
out
q ¼

1

M2

XN
v¼1

�
kinv
�2
XN
v¼1

�
koutv

�2
: ð10Þ

Without loss of generality, let us consider the contribution
of node 1 to the above expression rewritten as

1

M2

�
kin1
�2 þ

XN
v¼2

�
kinv
�2

 ! �
kout1

�2 þ
XN
v¼2

�
koutv

�2

 !
: ð11Þ

We assume that a term, such as ðkin1 Þ
2, is contributed fully

by node 1, whereas a multiplication term, such as
ðkin1 Þ

2ðkin2 Þ
2, is contributed equally by node 1 and node 2.

Therefore, node 1 contributes�
kin1
�2�

kout1

�2

M2
þ
�
kout1

�2PN
v¼2

�
kinv
�2

2M2
þ
�
kin1
�2PN

v¼2

�
koutv

�2

2M2
:

ð12Þ

This yields

1

2M2

�
kout1

�2
XN
v¼1

�
kinv
�2 þ

�
kin1
�2
XN
v¼1

�
koutv

�2

 !
; ð13Þ

and using (8) and (9), can be further reduced to

1

2M

��
kout1

�2
�inq þ

�
kin1
�2
�outq

�
: ð14Þ

Thus, we obtain a node’s contribution to the term �inq �
out
q as

�d ¼
1

2M

��
kout
�2
�inq þ

�
kin
�2
�outq

�
: ð15Þ

The standard deviations are already used as scaling terms,
so we need not worry about their contributions. Therefore,
we can now define a node’s contribution to directed
assortativity of a network, represented by (4), by using �d
given by (7), and �d given by (15):

�d ¼
�d � �d
�inq �

out
q

: ð16Þ

This results in

�d ¼
�
kout
�2 �

jin � �inq
�
þ ðkinÞ2

�
jout � �outq

�
2M�inq �

out
q

; ð17Þ

where kout is the out-degree of the node under considera-
tion, kin is its in-degree, jin is the average in-degree of its
neighbors (from which the node can be reached), and kout
is the average out-degree of its neighbors (which can be
reached from the node). �inq 6¼ 0, �outq 6¼ 0. By including the
scaling terms �inq and �outq , we ensure that the equation for
local assortativity for a directed network satisfies the
condition

rd ¼
XN
i¼1

�d; ð18Þ

where rd is the assortativity of the directed network. It
may also be illustrative to look at �d as the average of
two quantities:

�1 ¼
�
kout
�2�

jin � �inq
�

M�inq �
out
q

ð19Þ

and

�2 ¼
ðkinÞ2

�
jout � �outq

�
M�inq �

out
q

: ð20Þ

In general �1 and �2 are not equal for individual nodes.

2.3 Motivation for Alternative Local Assortativity
Definitions

Before we proceed to analyze the local assortativity
distributions in directed model and real-world networks,
in terms of �d, let us pause to reflect on the meaning of
assortativity and local assortativity in directed networks. As
we have mentioned, assortativity in undirected networks is
the tendency for nodes to connect with nodes which have
similar degrees. In directed networks, however, according to
the definitions in [3], we are looking at the correlation
between out-degrees of the source nodes and in-degrees of
the target nodes (or vice versa). Therefore, assortativity here
is the tendency of nodes to connect with other nodes, whose
in-degrees are similar to the considered node’s out-degree. If
an individual node has high local assortativity �d, it means
that it has high out-degree and connects to other nodes with
high in-degree, or it means that this node has high in-degree
and connects to other nodes with high out-degrees.

Consider a directed biological network where there are
regulators and regulatees, such as gene regulatory net-
works. Suppose, the links in such networks are directed
from regulator to regulatee. A node which has high out-
degree will be a dominant regulator. However, the impact
of the regulator in the network will be maximised if the
nodes that this regulator regulates, in turn, regulate a lot of
other nodes, i.e., they themselves have high out-degrees.
Therefore, to understand the importance of such nodes in
the networks, we need a quantity that favours nodes that
have high out-degree and are connected to other nodes with
high out-degrees. Similarly, the nodes which are most likely
to have complex regulation patterns are those nodes which
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are regulated by many nodes, each of which, in turn, is
regulated by many other nodes. To measure this tendency,
we need a quantity which favours nodes with high in-
degree which are (directionally) connected to other nodes
with high in-degrees, as shown in Fig. 1.

Such quantities cannot be obtained by decomposing (3)
for directed assortativity above, i.e., by analyzing each
node’s contribution to this assortativity coefficient. In other
words, �d fails to capture the “cascading” effect. We,
therefore, need alternative assortativity coefficients, which
measure the tendencies where nodes preferentially connect
with other nodes with similar out-degrees to themselves, or
nodes preferentially connect with other nodes with similar
in-degrees. We call these tendencies as “out-assortativity”
and “in-assortativity” of a network.

2.4 Out-Assortativity and In-Assortativity

Let us define out-assortativity of a network as the tendency
where nodes connect with other nodes which have similar
out-degrees to themselves. In-assortativity is, on the other
hand, the tendency where nodes connect with other nodes
with similar in-degrees. Note that these definitions fit well
with the “generic” definition of assortative mixing, where
similarity can be interpreted in terms of any given single
quantity [2], [3]. Whereas the previous definition of node
assortativity in directed networks defined similarity in
terms of two different quantities (out-degree and in-degree)
for a node pair.

To formally define out-assortativity and in-assortativity,
however, we first need to define a few concepts in terms of
node distributions. These definitions are similar but subtly
different from the ones we have reviewed above.

We have defined ej;k as the probability distribution of a
link going into a node with j in-degree and out of a node
with k out-degree. Now, let us define eoutj;k distribution as the
probability of a link going into a node of j out-degree and
out of a node of k out-degree. While qoutðkÞ is the probability
distribution of a link going out of a node with k out-degree,
as before, let us define q0outðkÞ as the probability distribution
of a link going into a node with k out-degree. Similarly, let
us define einj;k distribution as the probability of a link going
into a node of j in-degree and out of a node of k in-degree.
Furthermore, while qinðjÞ is the probability distribution of a
link going into a node with j in-degree, let us define q0inðjÞ
as the probability distribution of a link going out of a node
with j in-degree. It is important to appreciate the subtle
differences in these distributions. An example demonstrat-
ing these differences is shown in Fig. 1.

We now can define the out-assortativity and in-assorta-
tivity of a network, which we consider as more meaningful
measures of assortativity in directed networks. The out-
assortativity of a network is the tendency where nodes tend
to connect with other nodes with similar out-degrees. This is
formally defined as

rout ¼
1

�outq �outq0

X
jk

jkeoutj;k � �outq �outq0

" #
; ð21Þ

where �outq is the standard deviation of qout, and �outq0 is the
standard deviation of q0out of the network. Where a network
has positive rout, it means that nodes with high out-degrees
tend to connect to other nodes with high out-degrees. If a
network has negative rout, it means that nodes with high
out-degrees tend to connect to nodes with low out-degrees.

Similarly, the in-assortativity of a network is the
tendency whereby nodes tend to connect with other nodes
with similar in-degrees. In-assortativity can be formally
defined as

rin ¼
1

�inq �
in
q0

X
jk

jkeinj;k � �inq �inq0
" #

; ð22Þ

where �inq is the standard deviation of qin, and �inq0 is the
standard deviation of q0in of the network. If a network has
positive rin, it means that nodes with high in-degrees tend
to connect to other nodes with high in-degrees. If a network
has negative rin, it means that nodes with high in-degrees
tend to connect to nodes with low in-degrees.

2.5 Local Out-Assortativity and Local
In-Assortativity

Now, we can define local assortativity for directed networks
in terms of exclusively out-degrees and exclusively in-
degrees. We define local out-assortativity of a node as a
node’s contribution to the network’s out-assortativity. As
demonstrated in Appendix, the local out-assortativity of a
node is given by

�out ¼
kout

2M�outq �outq0

�
kout
�
jout � �outq0

�
þ jin

�
kout � �outq

��
; ð23Þ

where kout is the node’s out-degree, jin is the node’s in-
degree, jout is the average out-degree of the “target”
neighbors to which this node has a directed link, and kout
is the average out-degree of the “source” neighbors from
which this node is reachable via a directed link. Further-
more, �outq and �outq0 are the expectations of the distributions
qoutðkÞ and q0outðkÞ, respectively; �outq and �outq0 are the
standard deviations of these quantities.

Local out-assortativity can be interpreted in the follow-
ing way. It is a linear combination of two terms, ðjout � �outq0 Þ
and ðkout � �outq Þ. The first term represents the difference
between the average out-degree of target nodes from this
node, and the average out-degree of target nodes globally
(that is, the expected out-degree of a node at the end of a
directed link). Similarly, the second term represents the
difference between the average out-degree of source nodes
that are neighbors to this node, and the average out-degree
of source nodes globally. That is, both terms compare the
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local average with the global average. The overall local out-
assortativity is a scaled linear combination of these terms.
Therefore, �out is increased if local average of a node’s
neighbors, in terms of out-degrees, is higher than the global
average. On the other hand, �out is reduced if the global
average of out-degrees is higher than the local averages
around a given node. In this case, the node tends to become
locally out-disassortative. This interpretation is similar to
local assortativity in the undirected case, as proposed in [5].

Similarly, we may define local in-assortativity of a node
as a node’s contribution to the network in-assortativity,
given by

�in ¼
jin

2M�inq �
0in
q

�
jin
�
jin � �inq0

�
þ kout

�
kin � �inq

��
; ð24Þ

where kout is the node’s out-degree, jin is the node’s in-
degree, jin is the average in-degree of the “target” neighbors
to which this node has a directed link, and kin is the average
in-degree of the “source” neighbors from which this node is
reachable via a directed link. �inq and �inq0 are the expectations
of the distributions qinðkÞ and q0inðkÞ, respectively; �inq and
�inq0 are the standard deviations of the same quantities. Note
that the interpretation of �in, in terms of the differences
between local and global averages, is similar to that given
for �out above.

The local out-assortativity and local in-assortativity
indeed satisfy the sum rules:

rout ¼
XN
i¼1

�out; ð25Þ

rin ¼
XN
i¼1

�in: ð26Þ

The above mentioned and defined concepts are sum-
marised in Table 1. Note that some of the measures have
been introduced in previous studies, as indicated by
citations given. Other measures (without citation details)
are introduced in this paper for the first time.

3 SINGULARITY CASES OF DIRECTED LOCAL

ASSORTATIVITY

When defining directed assortativity and directed local
assortativity, it is important to carefully consider what
happens when one of the degree distributions, qinðkÞ, q0inðkÞ,

qoutðkÞ, q0outðkÞ, is a Kronecker � function (i.e., only one type

of degree exists), making the variance zero. A few

combinations are worthy of attention here.
Let us consider the in-assortativity. Suppose �qin and �q0in

are both zero. Let us then look at the degree kin for which
these distributions are nonzero. If both these distributions
are nonzero at the same point (kin), then we need to obtain
network assortativity equal to 1, since all nodes have the
same degree. Therefore, in this case, we define local in-
assortativity of a node as

�in ¼
kin

M
; ð27Þ

where kin is the in-degree of the node concerned.
Let us note that both these distributions cannot be

Kronecker � functions and nonzero at different points (for
different kin). If qin is a � function, then there is only one
type of in-degrees present in the network, and q0in also must
be a � function and be nonzero at the same point for the
same value of kin. For the same reason, if �inq ¼ 0, then it
must follow that �inq0 ¼ 0 too.

Similarly, if �outq ¼ 0, then �outq0 would have to be zero too,

and we can define �out as

�out ¼
kout
M

: ð28Þ

Let us point out, however, that in real-world networks of
reasonable size, these singularity conditions rarely occur.

4 DISTRIBUTIONS OF LOCAL ASSORTATIVITY

Since local assortativity is a property of a node, it is possible to
construct local assortativity distributions for a given directed
network, plotting local assortativity values against degrees
(in-degrees or out-degrees). Following [4], we may calculate
the average local assortativity value for all nodes with a given
in-degree kin, or a given out-degree kout. We propose that �out
should be plotted against out-degree, since this quantity
measures the contribution of a node to the out-degree
correlation, while �in should be plotted against in-degree,
since this quantity measures the contribution of a node to the
in-degree correlation. �d is plotted against node degree. If we
denote by NðkoutÞ the number of nodes with out-degree kout,
by NðkinÞ the number of nodes with in-degree kin, and by
NðkÞ the number of nodes with degree k, the following
equations hold true:
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TABLE 1
Summary of the Assortativity Measures

Previously introduced measures are indicated by citations. New measures introduced in this paper are without citations.



rd ¼
X
k

NðkÞ �d kð Þ; ð29Þ

where �dðkÞ is the average �d of all nodes with degree k;

rout ¼
X
kout

NðkoutÞ �out kout
� �

; ð30Þ

where �outðkoutÞ is the average �out of all nodes with out-

degree kout;

rin ¼
X
kin

NðkinÞ �in kin
� �

; ð31Þ

where �inðkinÞ is the average �in of all nodes with in-

degree kin.
In the following sections, we will mainly consider �out

versus kout distributions, and �in versus kin distributions.
We will not concentrate on �d versus k distributions since as
we pointed out earlier, the quantity �d is less helpful in
understanding the topological role of nodes in directed
networks. However, we will give a few examples of these
plots for comparison.

5 LOCAL ASSORTATIVITY IN CANONICAL

NETWORKS

Before analyzing local assortativity profiles for real-world
and simulated directed networks, let us look at these profiles
for some important but simple topologies. Let us first
consider the �out versus kout profiles. Star networks are
commonly used in communication networks and are an
important motif embedded in larger networks [1]. A few
varieties of star topologies are possible, as shown in Fig. 2,
and it is easy to understand that all of these topologies result
in disassortative networks. As we show below, the local
assortativity distributions in these cases are � functions, or
linear combinations of two � functions, and all nodes are
disassortative in nature. Grid layout, on the other hand,
results in a perfectly assortative network, and all nodes are

assortative, even though here too, the distribution is a
� function. The ring topology results in a perfectly
assortative network, with all nodes equally contributing to
this assortativity, therefore, the �out versus kout is again a
delta function. Similar or complimentary results are
obtained for �in versus kin distributions. We formally
present these observations below, which can be mathema-
tically derived and have been verified by simulation.

Regular lattice (a)

�out ¼
1

N
�j;m� ð32Þ

�in ¼
1

N
�j;n� ð33Þ

where m� is the out-degree of a node, and n� is the in-
degree.

Inward multistar (b)

�out ¼ �
1

N � n� �j;n
� ð34Þ

�in ¼ �
1

n�
�j;N�n� ð35Þ

Outward multistar (c)

�out ¼ �
1

n� �j;N�n
� ð36Þ

�in ¼ �
1

N � n� �j;n
� ð37Þ

where n� is the number of hubs.
Outward star (d)

�out ¼ ��j;N�1 ð38Þ

�in ¼ �
1

N � 1
�j;1 ð39Þ

Inward star (e)

�out ¼ �
1

N � 1
�j;1 ð40Þ

�in ¼ ��j;N�1 ð41Þ

Ring (f)

�out ¼ �in ¼
1

N
�j;1: ð42Þ

Now, we proceed to analyze assortativity and local
assortativity distributions in simulated and real-world
directed scale-free networks.

6 ASSORTATIVITY OF REAL-WORLD DIRECTED

NETWORKS

Table 2 shows the assortativity coefficients of a number of
directed networks, including neural networks, GRNs,
transcriptions networks, cortical networks, and foodwebs.
rd is the network assortativity according to (3) for directed
networks, whereas rout and rin represent the out-assortativ-
ity and in-assortativity of networks respectively. r repre-
sents the assortativity when networks are considered
undirected, and it is meaningless for directed networks
and provided only for comparison. A clear tendency can
immediately be observed in these values. First of all, the
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Fig. 2. Model networks: (a) grid network with links directed uniformly,
(b) “inward” multistar with links directed toward the hubs, (c) “outward”
multistar with links directed toward the peripheral nodes, (d) “outward”
star with links directed toward peripheral nodes, (e) “inward” star with
links directed toward the hub, and (f) ring with directed links with uniform
orientation.



relative level of assortativity is largely preserved over
different ways of measuring it: there are no dramatic
changes. Second, the networks tend to be more assortative
when their in-assortativity and out-assortativity are con-
sidered than when they are combined together. For
example, consider the neural network of C. elegans. Even
though the network appears disassortative with rd ¼ �23%,
its rout ¼ þ10% and rin ¼ �9%, and both values shifted
considerably toward the (positive) assortativity side. Simi-
larly, if we consider Chesapeake lower foodweb, the network
seems disassortative with rd ¼ �45%, even though when rin
and rout are considered separately, the values are rin ¼ �6%
and rout ¼ þ21%, again, both being shifted considerably
toward positive values of assortativity. Fig. 3 captures this
tendency. Therefore, we may conclude that there is a weaker
signature of disassortative mixing when out-degrees and in-
degrees are considered separately. Indeed, most directed
networks tend to be considerably disassortative when the
tendency of nodes mixing with other nodes which have in-degrees
similar to their own out-degrees is considered. However, these
networks tend to be more assortative when the tendency of
nodes mixing with other nodes which have out-degrees similar to

their own out-degrees is considered, or when the tendency of

nodes mixing with other nodes which have in-degrees similar to

their own in-degrees is considered.
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TABLE 2
Assortativity in Real-World Directed Networks

The table shows assortativity coefficients calculated treating the networks as undirected and directed, and the out-degree and in-degree correlations.
The table also shows corresponding mutual information quantities. The sources for the biological networks are [10], [7], [9], [8], [11].

Fig. 3. Shift in assortativity coefficient when in-degrees and out-
degrees are considered separately. The points correspond to networks
in Table 1. Crosses: directed assortativity coefficients. Filled squares:
directed out-assortativity coefficients. Circles: directed in-assortativity
coefficients. Note the upward shift in values when out-assortativity and
in-assortativity are compared to assortativity.



Furthermore, we note that rout values tend to be even
more assortative than rin values. While in-assortativity of
the networks considered is still slightly disassortative
(rd < 0), out-assortativity remains slightly or strongly on
the assortative side (rd > 0).

Note also that the cortical networks show comparatively
less difference when rin and rout are considered separately,
from the case when rd is calculated as a single value. This
could be because of the fact that the cortical networks have
a comparatively high link density, and thus, many pairs of
nodes have links connecting in both directions. Therefore,
the effect of directionality is minimized, and in-degrees and
out-degrees of nodes tend to be similar.

7 ASSORTATIVITY AND INFORMATION CONTENT IN

DIRECTED NETWORKS

To further understand these tendencies when out-degree
distributions and in-degree distributions are considered
separately for assortative mixing, we have considered the
tendencies in mixing-related mutual information in net-
works. In previous sections, we defined a number of new
degrees or link distributions for directed networks. These
include eoutj;k , einj;k, q

0inðkÞ, and q0outðkÞ. This was in addition to
the distributions already defined and used, namely ej;k,
qinðkÞ, and qoutðkÞ for directed networks. We can make
some interesting observations by looking at the informa-
tion content of various excess degree distributions of
directed networks.

Solé and Valverde [1] considered (Shannon) mutual
information contained in the network, as an indicator of the
amount of general correlation between network nodes.
Importantly, the maximum attainable information content
defines the network’s capacity, in analogy with the
information-theoretic notion of channel capacity—the max-
imum mutual information for the channel over all possible
distributions of a transmitted signal. In general, information
content is a vital indicator of complex nonlinear behavior in
self-organizing systems, and it can be associated with
predictive information, richness of structure (i.e., excess
entropy), and physical complexity [12]. It was shown that the
information content within a scale-free network increases
nonlinearly with the absolute value of the assortativity [13],
and can be related to network’s resilience under node
removal or percolation [14], [4].

Formally, the network’s information content (called
information transfer by Solé and Valverde [1]) is defined as

IðqÞ ¼ HðqÞ �Hðq j q0Þ; ð43Þ

where the first term is the Shannon entropy of the network,
HðqÞ ¼ �

PNp�1
k¼0 qk logðqkÞ, that measures the diversity of the

degree distribution or the network’s heterogeneity, and the
second term is the conditional entropy defined via condi-
tional probabilities of observing a node with k links leaving
it, provided that the node at the other end of the chosen link
has k0 leaving links. Importantly, the conditional entropy
Hðq j q0Þ estimates correlations in the network created by
connecting the nodes with dissimilar degrees—this compo-
nent affects the overall diversity or the heterogeneity of the
network, but does not contribute to the amount of informa-
tion within it. Informally, information content within the

network is the difference between network’s heterogeneity
and assortative noise within it [1].

Shannon information IðqÞ is a better, more generic
measure of dependence than the correlation functions that
measure linear relations. Mutual information measures the
general dependence and is thus a less biased statistic [1].
Shannon information (43) can also be seen as the Kullback-
Leibler divergence Kðej;k k qjqkÞ [12] (i.e., relative entropy)
of the product of two marginal distributions q from the joint
distribution e. This divergence amounts to the expected
number of extra bits that must be transmitted in order to
identify (on average) excess degrees of connected nodes j
and k of the link ðj; kÞ if they are assigned using only the
marginal distribution q, instead of the joint distribution ej;k.

The entropy and information content described above
are defined with respect to the degree distribution and joint
degree distribution, and there are alternative definitions
where the entropy of the network could be characterized by
higher order correlations or community structure [15]. It is
well known that Shannon information contains no inherent
directionality, and various alternatives have been proposed.
For example, it can be argued that transfer entropy [16] is
the appropriate measure for predictive information transfer
in spatiotemporal systems [17]. In this work, however, we
employ mutual information to represent information con-
tent (and not a directional transfer) within a network, as
suggested by Solé and Valverde [1], and extend this
measure to directed networks.

If one attempts to compare networks according to their
information content (analogous to optimizing communica-
tion channels), assortativity becomes the main factor: the
less nonassortative is the network, the more information it
can contain. Hence, to compare the levels of assortative
mixing in directed biological networks, it makes sense to
define relevant quantities of information content and
measure these in the networks under consideration.

Mutual information in terms of excess degrees is defined
for undirected networks as

IðqÞ ¼
X
j

X
k

ej;k log
ej;k

qðjÞqðkÞ: ð44Þ

In similar vein, mutual information for directed networks
could be defined as

Iðqin; qoutÞ ¼
X
j

X
k

ej;k log
ej;k

qinðjÞqoutðkÞ: ð45Þ

Furthermore, we can define mutual information exclusively
in terms of in-degrees or out-degrees as:

Iinðqin; q0inÞ ¼
X
j

X
k

einj;k log
einj;k

qinðjÞq0inðkÞ; ð46Þ

and

Ioutðqout; q0outÞ ¼
X
j

X
k

eoutj;k log
eoutj;k

qoutðjÞq0outðkÞ: ð47Þ

By defining mutual information in terms of various
excess degree distributions in directed networks, we can
make interesting observations about the information content
in the network topology. Table 2 shows the values of the
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various mutual information measures that we consider. We
observe that the highest information is contained in out-
degree mixing patterns. That is, it is the regulators that
dominate, defining the connecting patterns of the network.

8 LOCAL ASSORTATIVITY DISTRIBUTIONS OF

DIRECTED BIOLOGICAL NETWORKS

Now, let us consider local assortativity distributions of

some of the networks in Table 2. We will look at both �out
versus out-degree distributions and �in versus in-degree

distributions. The local assortativity distributions of four

different types of biological networks are shown in Figs. 4,

5, 6, 7, 8, 9, 10, and 11.
It can be observed that, in the rat GRN, the distributions

are nonlinear and have assortative hubs. However, in some

cases, such as E. coli transcription network (local in-
assortativity) and C. elegans neural network (again local
in-assortativity), the hubs are disassortative. Furthermore,
in the human cortical network also, the largest hubs are
disassortative, though the provincial hubs seem assortative.
As pointed out in [5], it is possible to classify networks
(directed networks in this case) based on whether hubs are
assortative or disassortative. Specifically, networks can be
classified as

1. assortative networks with assortative hubs,
2. disassortative networks with assortative hubs,
3. assortative networks with disassortative hubs, and
4. disassortative networks with disassortative hubs [5].

In the case of directed networks, this classification can be
done for both out-degree correlations and in-degree correla-
tions. For example, the rat GRN network would fall into the
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Fig. 4. Local in-assortativity distribution versus in-degree: rat GRN
network.

Fig. 5. Local out-assortativity distribution versus out-degree: rat GRN
network.

Fig. 6. Local in-assortativity distribution versus in-degree: E. coli
transcription network.

Fig. 7. Local out-assortativity distribution versus out-degree: E. coli
transcription network.

Fig. 8. Local in-assortativity distribution versus in-degree: human cortex
network.

Fig. 9. Local out-assortativity distribution versus out-degree: human
cortex network.



first class, for both in-degree and out-degree correlations.

Other networks, such as E. coli transcription, would fall into

different classes depending on whether out-degree or in-

degree correlation is considered. Furthermore, if the hubs

with high out-degree are assortative, this means that these

hubs are regulators which regulate other regulators, thereby

highly influencing the expression patterns of the whole

network. Similarly, if the nodes with larger in-degrees are

assortative, they form “sinks” of the regulating signals. Most

biological networks that we studied have assortative hubs

and disassortative peripheral nodes when out-degree and

in-degree are considered separately.
It is also possible to plot individual node degrees on X

axis and local assortativity on Y axis as a scatter plot to get a

different kind of local assortativity profile. This profile

better highlights the individual nodes with highest �in or

�out. For example, the �out versus out-degree plot for R.

norvegicus (rat) GRN network is shown in Fig. 12. The

corresponding figure for M. musculus (mouse) is shown in

Fig. 13. Note that the nodes with the highest �out can be

easily highlighted in these plots. These are the regulators of

the network. Furthermore, we may observe certain

“branches” in the profile, where nodes with similar degrees

seem to have vastly different out-assortativity values. This

highlights the fact that node degree (or out-degree) alone

cannot be used to determine the regulating effect of a node

upon the rest of the network.

8.1 Comparing Various Local Assortativity
Measures

We should note that for directed networks, the �out and �in
profiles are most informative in understanding the network
topology. Treating them as undirected networks leads to
misleading impressions, while using �d does not give as
much information about node’s roles as �out and �in do. To
understand these points, let us first plot the local
assortativity distributions of a transcription network, treat-
ing it as undirected network. The (undirected) transcription
network of E. coli is shown in Fig. 14.

The figure shows the local assortativity � versus degree
distributions for the transcription network, considered as
undirected network. It would seem from this profile that
this network has linear local assortativity profiles, and
hubs are disassortative. The mechanisms responsible for
growing such networks are quite different from the
mechanisms that grow networks with nonlinear profiles
and assortative hubs [6]. However, as Figs. 6, 7, and 15
show, we know that this transcription network has a
nonlinear assortativity profile with hubs assortative or
disassortative depending on the correlations in which we
are interested (out-degree or in-degree correlations). There-
fore, it is clear that the (undirected) � distribution can be
misleading when applied to directed networks, and
directed local assortativity must be used.
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Fig. 11. Local out-assortativity distribution versus out-degree:
C. elegans neural network.

Fig. 12. Rat Gene Regulatory network: Scatter plot of node �out versus
out-degree. Note the several “branches” in the plot, which seem to
indicate that nodes with similar degrees can have very different �out
values depending on their topological placement. The nodes at the
highest branch are the ones topologically in the best position to regulate
the other nodes, while the nodes in the lowest branch are in the worst
position to do so. Local out-assortativity highlights this property.

Fig. 13. M. musculus Gene Regulatory network: Scatter plot of node �out
versus out-degree. Again, note the several “branches” of plot indicating
nodes with similar out-degree but differing local out-assortativity.

Fig. 10. Local in-assortativity distribution versus in-degree: C. elegans
neural network.



Let us now look at the measure �d. The distribution of
this measure for E. coli transcription networks is given in
Fig. 15. This shows nonlinear assortativity profile with
assortative hubs. This measure has directedness embedded
in it, but it was derived from (3). If the �d of a node is high, it
means that the node has high out-degree coupled with its
neighbors having high in-degree, or the node has high in-
degree coupled with its neighbors having high out-degree.
It is a regulator surrounded by regulatees, or vice versa.
Therefore, we cannot say much about the global impact of
this regulator. The Fig. 15 seems to show two large hubs,
one highly assortative and another slightly disassortative.
In fact, the profile seems ‘split’ and moving toward these
two hubs. On the other hand, when we consider �out and �in
separately, the trend is much clearer, as is shown in Figs. 6
and 7. We have a highly disassortative in-degree hub and a
highly assortative out-degree hub. Thus the quantities �out
and �in have more utility in identifying assortative or
disassortative mixing in directed networks.

In summary, we can say that local assortativity profiles

of directed networks are most informative when �out and �in
are plotted against out-degree and in-degree, respectively.

Their undirected local assortativity profiles, if considered,
can give misleading information about their growth

mechanisms and phase of growth, while considering their
�d values tend to combine and confuse out-degree and in-

degree trends.

8.2 Local Assortativity Profiles and Functionality of
Individual Nodes

The local assortativity profiles can be used to make some

interesting observations about the functionality of indivi-
dual nodes in a directed biological network, and thus

simulate further research about these nodes at an individual
level. For example, the nodes with the highest local

assortativity (both �out and �in) for a range of networks
are given in Table 3. For comparison, the nodes with highest

out-degrees and in-degrees are also listed in the table. It is
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Fig. 15. Local assortativity �d distribution versus degree: E. coli
transcription network, considered directed. Contrast with the undirected
case above.

TABLE 3
A List of Biological Networks and Their Nodes with Highest �out or �in Values

The nodes with highest out-degrees and in-degrees are shown in corresponding brackets for comparison. POC stands for Particulate Organic
Carbon; BI stands for Benthic Invertibrates; BC stands for Benthic Crustaceans. In GRNs, the nodes are genes, while in transcription networks, the
nodes are transcription factors.

Fig. 14. Local assortativity � versus degree profile of E. coli transcription
network. Here, the network was considered as undirected. Contrast with
Figs. 6, 7, and 15.



apparent that the nodes with highest out-degrees or in-

degrees are not necessarily the strongest regulators/

regulatees in the table. This seems to be the case only

among the GRNs we analyzed. Among the transcription

networks and foodwebs, the node with the highest out-

degree is often different from those with highest �out. For

example, in the case of C. glucamitum transcription network,

the transcription factor arnR is the node with the highest

�out, while the transcription factor glxR is the node with the

lowest �out and highest out-degree. A similar argument

holds true for �in. Therefore, local assortativity quantities

can be used to gain information about node functionality

that is not apparent from node degrees.
The considered examples demonstrated that local assor-

tativity profiles of biological networks can be used to
highlight interesting topological properties of individual
nodes or groups of nodes.

9 CONCLUSION

In this paper, we analyzed assortative mixing in directed
biological networks. We introduced new assortativity
coefficients, the out-assortativity rout and in-assortativity
rin, and showed how these can be meaningful measures in
understanding network topology. Then, we extended the
concept of local assortativity into directed networks, defin-
ing local out-assortativity �out and local in-assortativity �in.
We analyzed local assortativity profiles of directed biological
networks and attempted to relate out-assortativity and in-
assortativity of individual nodes with their functions.

The studied directed biological networks are more
assortative when in-degree mixing and out-degree mixing
are considered separately, i.e., rin and rout are generally
higher than rd. Furthermore, out-degree mixing patterns
contain the highest amount of Shannon information,
suggesting that nodes with high local out-assortativity
(regulators) dominate the connectivity of the network.
When out-degree and in-degree mixing are considered
separately, the assortativity or disassortativity of nodes
especially hubs become more explicit, i.e., the nodes with
relatively low � can have relatively high �in or �out and vice
versa. We showed also that the local out-assortativity can be
used to identify the regulators, which are most influential,
since high out-degree (or in-degree) does not necessarily
imply high �out (or �in) and vice versa. Local assortativity
profiles can also be used to identify nodes and groups of
nodes, which are “interestingly” placed topologically—that
is, with the ability to regulate or to be regulated.

We expect that the assortative and local assortative

measures, introduced in this paper, will be extensively used

in analyzing directed biological networks.

APPENDIX

We set out to derive the expressions for �out and �in. That is,

we need to analyze contributions to terms appearing in (21)

and (22) for �out and �in, respectively.
First of all, we note that �inq0 and �outq0 can be equivalently

defined as:

�inq0 ¼
1

M

XM
m¼1

kinm ¼
1

M

XN
v¼1

kinv k
out
v ; ð48Þ

and

�outq0 ¼
1

M

XM
m¼1

koutm ¼
1

M

XN
v¼1

koutv kinv : ð49Þ

Note that �inq0 is the “expected in-degree” when a link goes
out from a node. From any node, kout links go out, therefore,
it has to be multiplied by kout when we consider the node v.
Similarly, note that �outq0 is the “expected out-degree” when a
link comes into a node. Any node has kin links going into it,
therefore, it has to be multiplied by kin when we consider
the node v. Therefore,

�outq0 ¼ �inq0 : ð50Þ

However, �outq and �inq are not always equal.
Having defined these expected degrees, we analyze (21)

for �out. We begin by considering the contribution to its first
term:

P
jk jke

out
j;k , where j; k are out-degrees. On the one hand,

it is produced via the neighbors reachable from the node:

�out1 ¼ kout
koutjout

M
; ð51Þ

where kout is the out-degree of the node considered, and jout
is the average out-degree of the neighbors reachable from
the node. That is, we have considered all links that depart
from the node as contributing to the quantity

P
jk jke

out
j;k .

On the other hand, we should also consider how much of
all links that reach a given node contribute to it. In this case,
the contribution to

P
jk jke

out
j;k is

�out2 ¼ kout
kinkout

M
; ð52Þ

where kin is the in-degree of node considered, and kout is the
average out-degree of the neighbors from which the node
can be reached.

As was done previously, we take the average of these
quantities as the contribution of a given node, �out, yielding

�out ¼ kout
koutjout

2M
þ kout k

inkout

2M
: ð53Þ

This expression captures the contribution to the termP
jk jke

out
j;k in (21).

We follow by considering the contribution to the second

term �outq0 �
out
q , obtained using (9) and (49), as follows:

�outq0 �
out
q ¼

1

M2

XN
v¼1

kinv k
out
v

XN
v¼1

�
koutv

�2 ð54Þ

¼ 1

M2
kin1 k

out
1 þ

XN
v¼2

kinv k
out
v

 ! �
kout1

�2 þ
XN
v¼2

�
koutv

�2

 !
:

ð55Þ

Considering a single node (without loss of generality, we
choose node 1), we obtain its contribution as

kin1
�
kout1

�3

M2
þ
kout1 kin1

PN
v¼2

�
koutv

�2

2M2
þ
�
kout1

�2PN
v¼2 k

out
v kin1

2M2
: ð56Þ
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We assume equal contribution when two nodes are
involved in a term, hence division by 2. This can be further
reduced to

1

2M2
kout1 kin1

XN
v¼1

�
koutv

�2 þ
�
kout1

�2
XN
v¼1

koutv kin1

 !
; ð57Þ

yielding, for any node,

�out ¼
1

2M

��
kout
�2
�outq0 þ kinkout�outq

�
: ð58Þ

Therefore, we obtain

�out ¼
�out � �out
�outq �outq0

; ð59Þ

resulting in

�out ¼
kout

2M�outq �outq0

�
kout
�
jout � �outq0

�
þ jin

�
kout � �outq

��
: ð60Þ

Similarly, we obtain

�in ¼
jin

2M�inq �
in
q0

�
jin
�
jin � �inq0

�
þ kout

�
kin � �inq

��
: ð61Þ
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