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Abstract. We analyze Shannon information of scale-free networks in terms of their assortativeness, and
identify classes of networks according to the dependency of the joint remaining degree distribution on
the assortativeness. We conjecture that these classes comprise minimalistic and maximalistic networks in
terms of Shannon information. For the studied classes, the information is shown to depend non-linearly on
the absolute value of the assortativeness, with the dominant term of the relationship being a power-law.
We exemplify this dependency using a range of real-world networks. Optimization of scale-free networks
according to information they contain depends on the landscape of parameters’ search-space, and we
identify two regions of interest: a slope region and a stability region. In the slope region, there is more
freedom to generate and evaluate candidate networks since the information content can be changed easily
by modifying only the assortativeness, while even a small change in the power-law’s scaling exponent brings
a reward in a higher rate of information change. This feature may explain why the exponents of real-world
scale-free networks are within a certain range, defined by the slope and stability regions.

PACS. 89.75.Hc Networks and genealogical trees – 89.75.Da Systems obeying scaling laws – 89.70.Cf
Entropy and other measures of information – 89.75.Fb Structures and organization in complex systems

1 Introduction

Various network growth models have been proposed and
studied to emulate the features of the real world net-
works [1–6]. One prominent model is the preferential
attachment model, which explains scale-free power law
degree distributions observed in many real world net-
works [4–6]. In this model, the probability of a new node
making a link to an existing node in the network is pro-
portional to the degree of the target node. As pointed out
by Newman [2], this model does not take into account the
degree of the source node in influencing the attachment
probability. In the real world, however, many networks
show the tendency where highly connected nodes are more
likely to make links with other highly connected links (i.e.,
to mix assortatively). The reverse is also true with some
networks, whereby highly connected nodes are more likely
to make links with more isolated, less connected, nodes
(i.e., to mix disassortatively). In both cases, the likelihood
of creating a link depends on the degrees of both nodes.
Assortativeness is a measure that quantifies this tendency
for preferential association [2]. It has been suggested that
the extent of assortativeness affects network’s resilience
under node removal or percolation [2,7]. Both assortative
and disassortative mixing should be contrasted with non-
assortative mixing, where preferential connection cannot
be established.
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Naturally occurring networks display various extents
of assortative mixing, and it is often possible to measure or
calculate the level of assortativeness in these networks [1].
In this paper we analyze the relationship between net-
work assortativeness and Shannon information within the
network. Solé and Valverde [1] defined the information
transfer simply as mutual information contained in the
network, or the amount of general correlation between
network nodes – we refer to this quantity as (Shannon)
information content. Importantly, the maximum attain-
able information content defines the network’s capacity, in
analogy with the information-theoretic notion of channel
capacity – the maximum mutual information for the chan-
nel over all possible distributions of a transmitted signal.
In general, information content is a vital indicator of com-
plex non-linear behavior in self-organizing systems, and
can be associated with predictive information, richness of
structure (i.e. excess entropy), and physical complexity [8].
We advance the conjecture that the information content
within a scale-free network increases nonlinearly with the
absolute value of the assortativeness.

2 Definitions

We study assortativeness in scale-free networks described
by power law degree distributions, formally specified as
P (k) = Ak−γu(k/Np) where u is a step function specify-
ing a cut-off at k = Np.
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To formally define assortativeness, we need to first de-
fine a number of concepts. The degree of a node is the
number of other nodes to which it is connected to. Let us
consider a network with N nodes (vertices) and M links
(edges), and say that the probability of a randomly cho-
sen node having degree k is pk, where 1 ≤ k ≤ Np. The
distribution of such probabilities is called the degree dis-
tribution of the network. However, if we reach a node by
following a randomly chosen link, we will see that the re-
maining number of links (the remaining degree) of this
node is not distributed according to pk. Instead it is bi-
ased in favour of nodes of high degree, since more links
end at a high-degree node than at a low-degree one [2].
The distribution of such remaining degrees is called the
remaining degree distribution. It is related to the original
degree distribution as follows:

qk =
(k + 1)pk+1
∑Np

j jpj

, 0 ≤ k ≤ Np − 1 (1)

where pk is the degree distribution of the network, and qk

is the remaining degree distribution of the network [2]. For
scale-free networks, equation (1) yields that if γ = 1 (that
is, p(k) = A/k before the cut-off), the resulting remaining
degree distribution is uniform, therefore symmetric. For
any other value of γ, the remaining degree distribution is
asymmetric.

Following Callaway et al. [3] and Newman [2], we can
now define the quantity ej,k to be the joint probability
distribution of the remaining degrees of the two nodes at
either end of a randomly chosen link. As pointed out by
Newman [2], this quantity is symmetric in its indices for
an undirected graph, that is ej,k = ek,j , and it obeys the
sum rules

∑

jk

ej,k = 1 and
∑

j

ej,k = qk.

Following Newman [4], we formally define assorta-
tiveness as a correlation function which is zero for non-
assortative mixing and positive or negative for assortative
or disassortative mixing respectively. It is defined as

r =
1
σ2

q

∑

jk

jk(ej,k − qjqk) (2)

where σ2
q is the variance of qk. Here r lies between −1

and 1, whereby r = 1 means perfect assortativeness, r =
−1 means perfect disassortativeness, and r = 0 means no
assortativeness (random linking).

If a network has perfect assortativeness (r = 1), then
all nodes connect only with nodes with the same degree.
For example, the joint distribution ej,k = qkδj,k where
δj,k is the Kronecker delta function, produces a perfectly
assortative network. If the network has no assortativeness
(r = 0), then any node can randomly connect to any other
node. A sufficiency condition for a non-assortative network
is ej,k = qjqk. This is not a necessary condition: other ej,k

may also produce non-assortativeness1.

1 For example, for the uniform remaining degree distribution
qk, the distribution ej,k = [qjδj,k + qjδj,(Np−1−k)]/2 will
produce a non-assortative network.

Newman noted that if a network is perfectly disassorta-
tive then every link connects two nodes of different degrees
(types) [9]. However, this requirement is not sufficient to
generate an ej,k resulting in r = −1. In fact, the r = −1
case is possible only for symmetric degree distributions
where qk = q(Np−1−k), and ej,k = qkδj,(Np−1−k). In other
words, for a network with remaining degrees 0, . . ., Np−1,
a node with a degree k must be linked to a node with a
degree Np−1−k. Nodes with identical degrees may still be
connected in a perfectly disassortative network (e.g., when
their degree j is precisely in the middle of the distribution
q, i.e., Np is odd and j = (Np − 1)/2).

Perfect disassortativeness is not possible for non-sym-
metric degree distributions q, because the ej,k distribution
must obey the rules ej,k = ek,j , as well as

∑

j

ej,k = qk. We

denote the maximum attainable disassortativeness as rm,
where rm < 0 (rm = −1 only for symmetric qk). This limit
and the corresponding e

(r=rm)
j,k can be obtained, given the

distribution qk, via a suitable minimization procedure by
varying ej,k under its constraints.

In general, we would like to distinguish between diffi-
culties in (i) constructing an ej,k distribution for a given
degree distribution p(k), and (ii) growing the network for
the calculated link distribution ej,k. When one is con-
structing an ej,k distribution for a given degree distri-
bution p(k), the cases of maximum disassortativity and
maximum assortativity differ. On the other hand, when
one is growing the network with the given ej,k, it may
also not be possible to achieve r = 1 for a given p(k) or
q(k). This is despite the fact that the required ej,k can
be obtained – the reason is that the network may not be
large enough to accommodate all the necessary connec-
tions. Thus, the maximum limit of assortativity may also
need to be considered for networks that can be actually
constructed.

3 Information content of networks

Information Theory was originally developed by
Shannon [10] for reliable transmission of information from
a source X to a receiver Y over noisy communication
channels. Put simply, it addresses the question of “how
can we achieve perfect communication over an imperfect,
noisy communication channel?” [11]. When dealing with
outcomes of imperfect probabilistic processes, it is useful
to define the information content of an outcome x which
has the probability P (x), as log2

1
P (x) (it is measured

in bits): improbable outcomes convey more information
than probable outcomes. Given a probability distribution
P over the outcomes x ∈ X (i.e., over a discrete random
variable X representing the process), and defined by the
probabilities P (x) ≡ P (X = x) given for all x ∈ X , the
average Shannon information content of an outcome is
determined by

H(X) = −
∑

x∈X
P (x) log P (x), (3)
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henceforth we omit the logarithm base 2. This quantity is
known as (information) entropy. Intuitively, it measures,
also in bits, the amount of freedom of choice (or the de-
gree of randomness) contained in the process – a process
with many possible outcomes has high entropy. This mea-
sure has some unique properties that make it specifically
suitable for measuring “how much “choice” is involved in
the selection of the event or of how uncertain we are of
the outcome?” [10]. In answering this question, Shannon
required the following properties for such a measure H :

– continuity: H should be continuous in the probabili-
ties, i.e., changing the value of one of the probabilities
by a small amount changes the entropy by a small
amount;

– monotony: if all the choices are equally likely, e.g. if
all the probabilities P (xi) are equal to 1/n, where n
is the size of the set X = {x1, . . . , xn}, then H should
be a monotonic increasing function of n: “with equally
likely events there is more choice, or uncertainty, when
there are more possible events” [10];

– recursion: H is independent of how the process is di-
vided into parts, i.e. “if a choice be broken down into
two successive choices, the original H should be the
weighted sum of the individual values of H” [10],

proving that entropy function −K
∑n

i=1 P (xi) log P (xi),
where a positive constant K represents a unit of measure,
is the only function satisfying these three requirements.

The joint entropy of two (discrete) random variables
X and Y is defined as the entropy of the joint distribution
of X and Y :

H(X, Y ) = −
∑

x∈X

∑

y∈Y
P (x, y) log P (x, y), (4)

where P (x, y) is the joint probability. The conditional en-
tropy of Y , given random variable X , is defined as follows:

H(Y |X) =
∑

x∈X

∑

y∈Y
P (x, y) log

P (x)
P (x, y)

=H(X, Y )−H(X).

(5)
This measures the average uncertainty that remains about
y ∈ Y when x ∈ X is known [11].

Mutual information I(X ; Y ) measures the amount of
information that can be obtained about one random vari-
able by observing another (it is symmetric in terms of
these variables):

I(X ; Y ) =
∑

x∈X

∑

y∈Y
P (x, y) log

P (x, y)
P (x)P (y)

. (6)

Mutual information I(X ; Y ) can also be expressed via the
conditional entropy:

I(X ; Y ) = H(Y ) − H(Y |X). (7)

The amount of information I(X ; Y ) shared between trans-
mitted X and received Y signals is often maximized by de-
signers of communication channels, via choosing the best

possible transmitted signal X . Channel capacity is defined
as the maximum mutual information for the channel over
all possible distributions of the transmitted signal X (the
source). The conditional entropy H(Y |X) is also called
the equivocation of Y about X , and thus, informally, the
mutual information I(X ; Y ) is equal to the difference be-
tween receiver’s diversity H(Y ) and the equivocation of
receiver about source H(Y |X). Hence, the channel capac-
ity is optimized when receiver’s diversity is maximized,
while its equivocation about the source is minimized.

Let us define the network’s information content (called
information transfer by Solé and Valverde [1]):

I(q) = H(q) − H(q|q′) (8)

where the first term is the Shannon entropy of the net-

work, H(q) = −
Np−1∑

k=0

qk log(qk), that measures the diver-

sity of the degree distribution or the network’s hetero-
geneity, and the second term is the conditional entropy
defined via conditional probabilities of observing a node
with k links leaving it, provided that the node at the other
end of the chosen link has k′ leaving links. Importantly,
the conditional entropy H(q|q′) estimates correlations in
the network created by connecting the nodes with dis-
similar degrees – this component affects the overall di-
versity or the heterogeneity of the network, but does not
contribute to the amount of information within it. Infor-
mally, information content within the network is the dif-
ference between network’s heterogeneity and assortative
noise within it [1].

In information-theoretic terms, H(q|q′) is the assorta-
tive noise within the network’s information channel, i.e.,
it is the non-assortative extent to which the preferential
(either assortative or disassortative) connections are ob-
scured [8]. Given the joint remaining degree distributions,
the information content can be expressed as:

I(q) =
Np−1∑

j=0

Np−1∑

k=0

ej,k log
ej,k

qjqk
(9)

Shannon information I(q) is a better, more generic mea-
sure of dependence than the correlation functions that
measure linear relations. Mutual information measures the
general dependence and is thus a less biased statistic [1].
Shannon information (9) can also be seen as the Kullback-
Leibler divergence K(ej,k‖qjqk) [12] (i.e., relative entropy)
of the product of two marginal distributions q from the
joint distribution e. This divergence amounts to the ex-
pected number of extra bits that must be transmitted in
order to identify (on average) remaining degrees of con-
nected nodes j and k of the link (j, k) if they are assigned
using only the marginal distribution q, instead of the joint
distribution ej,k. It is evident that maximal information
I(q) is attained when the product qjqk diverges the most
from the joint distribution ej,k, and minimal information
I(q) is attained when the product qjqk and the joint dis-
tribution ej,k diverge the least.

The entropy and information content described above
are defined with respect to the degree distribution and
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joint degree distribution, and there are alternative defini-
tions where the entropy of the network could be charac-
terized by higher order correlations or community struc-
ture [15].

It should also be noted that Shannon information con-
tains no inherent directionality, and various alternatives
have been proposed. For example, transfer entropy [13]
measures the average information contained in the source
about the next state of the destination that was not al-
ready contained in the destination’s past. It can be ar-
gued that transfer entropy is the appropriate measure
for predictive information transfer in spatiotemporal sys-
tems [14]. In this work we follow Solé and Valverde [1]
in using the mutual information to represent information
content (and not a directional transfer) within a network.

Solé and Valverde [1] were among the first to empiri-
cally analyse the relationship between assortativeness and
Shannon information, using a set of real world networks.
Their conclusion was that the information (transfer) and
assortativeness are correlated in a negative way: the
extent of disassortativeness increases with mutual infor-
mation (see Fig. 7 in [1]). First of all, we argue that net-
works with the same assortativeness r and the same dis-
tribution qk could have different information contents I
– because they may disagree on ej,k. Secondly, we intend
to demonstrate a more accurate dependency for networks
with power law degree distributions: the information con-
tent non-linearly and asymmetrically depends on the ab-
solute value of the assortativeness, i.e. mutual information
increases when assortativeness varies from a critical point
r, in either positive or negative direction. This relationship
subsumes the one implied by Solé and Valverde [1].

Most of the real world networks studied by Solé and
Valverde [1] did not show perfect (or nearly perfect) assor-
tativeness or disassortativeness: the observed values were
between 0.4 and −0.2. Moreover, the compared networks
did not agree on average degree, degree distribution, etc.
These reasons obscured the conclusion reported in [1].
Figure 1 demonstrates that Shannon information is not
negatively correlated with assortativeness (as conjectured
by Solé and Valverde [1]), but is correlated with the ab-
solute value of the assortativeness. The networks shown
in Figure 1 include the scale-free networks considered by
Solé and Valverde (Tab. 1 in [1], including some techno-
logical and biological networks), metabolic substrate net-
works (see Tab. 1), metabolic substrate networks with-
out inorganic components [16], transcription networks (see
Tab. 2), protein-protein interaction networks (see Tab. 3),
Internet at autonomous systems (AS) level (see Tab. 4),
citation networks (see Tab. 5), and collaboration networks
(see Tab. 6). The correlation between assortativeness and
Shannon information is non-linear, and we study this re-
lationship for scale-free networks in the Results and Anal-
ysis section.

4 Classification

In establishing the relationship between I(q) and r, we
classify networks according to the dependency of the dis-
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Fig. 1. Shannon information and assortativeness for dif-
ferent networks. Circles: networks considered by Solé and
Valverde (Tab. 1 in [1]); squares: metabolic substrate net-
works; triangles: metabolic substrate networks without inor-
ganic components [16]; crosses: transcription networks; stars:
protein-protein interaction networks; filled triangles: Internet
AS; pluses: citation networks; filled squares: collaboration net-
works.

tribution e
(r=r′)
j,k on the assortativeness r′. Within a class,

the same distribution qk and the same assortativeness r
result in the same information content I(r) (of course,
when distribution qk changes, the same r will typically
correspond to different values I).

As noted, the assortativeness r is defined in terms of
the joint distribution ej,k. We assert that if the distribu-
tion ej,k is given by the linear decomposition (10) for a
real number r′ > 0, then the network assortativeness is
precisely r′:

e
(r=r′)
j,k = r′ ( e

(r=1)
j,k − e

(r=0)
j,k ) + e

(r=0)
j,k (10)

where e
(r=1)
j,k = qkδj,k and e

(r=0)
j,k = qjqk. This is a sufficient

but not necessary condition. A similar sufficient condition
also exists for r′ < 0:

e
(r=r′)
j,k = − r′

rm
( e

(r=rm)
j,k − e

(r=0)
j,k ) + e

(r=0)
j,k (11)

where rm is the maximum attainable disassortativeness.
For symmetric distributions qk, the condition reduces to

e
(r=r′)
j,k = r′ ( e

(r=−1)
j,k − e

(r=0)
j,k ) + e

(r=0)
j,k (12)

where e
(r=−1)
j,k = qkδj,(Nq−1−k). These assertions can be

verified by substituting templates (10)–(12) into equa-
tion (2). The templates (10)–(12) define a class of net-
works, class A. As intended, the same distribution qk and
the same assortativeness r result in the same value I(r)
within the class. This is so simply because the templates
define a unique distribution e

(r=r′)
j,k for a given r′, and

the distribution e
(r=r′)
j,k yields a unique information I(r′)
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Table 1. Shannon information I(r) computed for metabolic
(substrate) networks and their corresponding class-A and class-
B networks. N is the total number of substrates, temporary
substrate-enzyme complexes, and enzymes [18].

Network N Np γ r IA(r) I(r) IB(r)

A. pernix 517 86 2.2 –0.181 0.14 0.34 0.75

A. fulgidus 1281 191 2.2 –0.173 0.14 0.42 0.66

M. thermoautotroph. 1138 167 2.2 –0.182 0.18 0.44 0.64

M. jannaschii 1103 160 2.2 –0.176 0.17 0.45 0.70

P. furiosus 790 114 2.1 –0.177 0.16 0.44 0.85

P. horikoshii 807 111 2.1 –0.176 0.22 0.43 0.80

A. aeolicus 1105 147 2.1 –0.193 0.19 0.38 0.67

C. pneumoniae 412 67 2.2 –0.151 0.11 0.32 0.68

C. trachomatis 467 80 2.3 –0.149 0.16 0.35 0.70

Synechocystis sp. 1486 233 2.1 –0.192 0.22 0.45 0.79

P. gingivalis 1052 161 2.2 –0.171 0.13 0.44 0.64

M. bovis 1102 193 2.2 –0.163 0.12 0.41 0.89

M. leprae 1106 177 2.2 –0.18 0.14 0.42 0.72

M. tuberculosis 1534 252 2.1 –0.179 0.20 0.43 0.86

B. subtilis 2217 410 2.1 –0.159 0.18 0.46 0.68

E. faecalis 1049 166 2.1 –0.186 0.18 0.40 0.90

C. acetobutylicum 1349 200 2.1 –0.187 0.17 0.44 0.86

M. genitalium 490 75 2.3 –0.184 0.13 0.49 0.42

M. pneumoniae 420 61 2.2 –0.189 0.05 0.40 0.50

S. pneumoniae 1116 180 2.1 –0.186 0.15 0.40 0.62

S. pyogenes 1087 176 2.1 –0.189 0.19 0.42 0.67

C. tepidum 953 136 2.1 –0.182 0.14 0.44 0.76

R. capsulatus 1808 283 2.1 –0.178 0.19 0.44 0.72

R. prowazekii 469 71 2.3 –0.161 0.08 0.37 0.67

N. gonorrhoeae 1104 169 2.1 –0.19 0.19 0.44 0.65

N. meningitidis 1032 160 2.2 –0.189 0.16 0.42 0.65

C. jejuni 993 153 2.2 –0.186 0.19 0.42 0.68

H. pylori 996 140 2.1 –0.196 0.21 0.45 0.74

E. coli 2316 430 2.1 –0.162 0.21 0.49 0.66

S. typhi 2403 444 2.2 –0.16 0.21 0.48 0.66

Y. pestis 1534 254 2.1 –0.168 0.19 0.42 0.86

A. actinomycetemcomit. 1046 154 2.1 –0.185 0.16 0.40 0.75

H. influenzae 1484 222 2.2 –0.179 0.20 0.48 0.63

P. aeruginosa 2023 364 2.1 –0.16 0.22 0.41 0.82

T. pallidum 506 87 2.2 –0.177 0.17 0.36 0.69

B. burgdorferi 433 78 2.3 –0.16 0.11 0.40 0.82

T. maritima 863 129 2.1 –0.186 0.19 0.37 0.67

D. radiodurans 2337 433 2.1 –0.157 0.24 0.45 0.60

E. nidulans 976 157 2.1 –0.177 0.14 0.43 1.00

S. cerevisiae 1559 260 2.1 –0.181 0.18 0.47 0.98

C. elegans 1207 208 2.1 –0.173 0.10 0.42 1.51

O. sativa 708 99 2.2 –0.167 0.09 0.47 1.50

A. thaliana 737 108 2.2 –0.172 0.09 0.46 1.51

Table 2. Shannon information I(r) computed for transcrip-
tion networks and their corresponding class-A and class-B net-
works. N is the total number of transcription factors [19].

Network N Np γ r IA(r) I(r) IB(r)

C. diptheria 71 63 8.49 –0.84 0.85 0.97 0.99

C. efficiens 50 27 8.5 –0.69 0.65 0.82 0.83

C. glucamitum 539 104 1.86 –0.37 0.44 0.86 0.88

C. jeikeium 52 51 8.49 –1.00 1.00 1.00 1.00

according to equation (9). In particular, Shannon informa-
tion within a non-assortative class A network (i.e., r′ = 0)
is zero: I(0) = 0.

Among many other possible classes, we define another
class, class B, by the following template:

e
(r=r′)
j,k =

r′ + 1
2

e
(r=1)
j,k − r′ − 1

2
e
(r=rm)
j,k (13)

Table 3. Shannon information I(r) computed for protein-
protein interaction networks and their corresponding class-A
and class-B networks. N is the total number of proteins [20].

Network N Np γ r IA(r) I(r) IB(r)

H. pylori 714 54 1.26 –0.216 0.18 0.36 0.71

M. musculus 502 12 1.96 –0.073 0.12 0.18 1.17

H. sapien 1529 39 1.62 0.067 0.09 0.19 1.10

D. melanogaster 7485 178 1.17 –0.07 0.06 0.15 0.83

S. cerevisiae 502 12 1.96 –0.07 0.12 0.18 1.17

E. coli 1861 152 1.15 0.06 0.04 0.96 1.03

Table 4. Shannon information I(r) computed for Internet and
their corresponding class-A and class-B networks. N is the to-
tal number of autonomous systems [21].

Network N Np γ r IA(r) I(r) IB(r)

AS 1998 3216 642 1.36 –0.198 0.20 0.55 0.58

AS 1999 4513 1018 1.21 –0.174 0.21 0.55 0.58

AS 2000 6474 1460 1.18 –0.16 0.18 0.62 0.83

Table 5. Shannon information I(r) computed for citation net-
works and their corresponding class-A and class-B networks.
N is the total number of cited papers [21].

Network N Np γ r IA(r) I(r) IB(r)

Scientometrics 2729 164 2.84 –0.03 0.03 0.16 0.88

Small & Griffith 1024 232 2.77 –0.193 0.08 0.37 0.76

Self-organizing maps 3773 740 2.88 –0.12 0.06 0.28 0.46

Small World 233 294 2.5 –0.303 0.15 0.66 0.72

Zewail 6652 331 2.63 0.002 0.03 0.20 0.21

Table 6. Shannon information I(r) computed for collabora-
tion networks and their corresponding class-A and class-B net-
works. N is the total number of authors [22].

Network N Np γ r IA(r) I(r) IB(r)

Astro Physics 16 046 360 2.71 0.235 0.16 0.58 0.58

Condensed matter 16 264 107 2.79 0.185 0.05 0.24 0.52

Condensed matt. 2003 30 460 202 2.74 0.178 0.09 0.22 0.40

Condensed matt. 2005 39 577 278 2.72 0.186 0.11 0.21 0.39

High-Energy Theory 7610 50 2.97 0.258 0.27 0.29 1.89

where e
(r=1)
j,k and e

(r=rm)
j,k , including e

(r=−1)
j,k which replaces

e
(r=rm)
j,k for symmetric distributions, are computed as for

the class A templates. For a non-assortative class B net-
work, the joint probability e

(r=0)
j,k is the average between

the corresponding probabilities of perfectly assortative
and disassortative networks: [e(r=1)

j,k + e
(r=rm)
j,k ]/2.

5 Results and analysis

5.1 Minimalistic and maximalistic networks

We computed Shannon information for a wide range of de-
gree distributions by substituting the corresponding tem-
plates into equation (9). While a degree distribution can
be characterized in terms of many properties, e.g. the av-
erage degree, the power law exponent γ, and the cut-off
Np, there are only two independent variables in any such
characterization, and we choose the exponent γ and the
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Fig. 2. Relationship between Shannon information and assor-
tativeness for class-A (squares) and class-B (stars) networks,
γ = 1.0, Np = 4.
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Fig. 3. Relationship between Shannon information and assor-
tativeness for class-A (squares) and class-B (stars) networks,
γ = 2.3, Np = 4.

cut-off Np as our independent variables2. It is worth point-
ing out that the constraints imposed by the connectivity
structure of networks of finite size generate spontaneous
correlations which in turn may introduce a structural cut-
off Np that possibly differs from the natural one [17].

Figure 2 (symmetric qk with γ = 1.0) and Figure 3
(asymmetric qk with γ = 2.3) show Shannon information
for both class A and class B networks.

For γ �= 1, the distribution qk is not symmetric, pre-
venting perfect disassortativeness, and therefore, it is not
possible to get close to the (r = −1) case as shown by
Figure 3.

Our conjecture is that the template defining the class A
networks is the minimalistic linear template: that is, the
information I(r) for the class A is minimal for a given r.
In other words, any real-world network with the same as-
sortativeness r, and the degree distribution parameters γ
and Np, should have higher information I(r). Similarly,

2 It is worth noting that a network’s information content is
independent of the network’s size N .

Fig. 4. The Escherichia coli metabolic network: r =
−0.162, I(r) = 0.49 bits; γ = 2.1, Np = 430. Figure is drawn
with Cytoscape 2.5.1.

the template defining the class B networks is, we believe,
the maximalistic linear template. That is, the information
I(r) for the class B is maximal for a given r, and real-world
networks with the same r, γ and Np, should have lower
information I(r).

We verify this conjecture using a range of real-world
networks in the following section.

5.2 Shannon information of real-world networks

We computed Shannon information for a set of networks.
For example, Table 1 is constructed using the cellu-
lar network data from Center for Complex Network Re-
search, University of Notre Dame [18]. These results are
augmented with information content computed for cor-
responding minimalistic and maximalistic networks, ob-
tained as follows. For a metabolic network with given num-
ber of nodes N , assortativeness r, and the degree distribu-
tion parameters γ and Np, we generate a minimalsitic class
A network, using the template (10)–(12), so that it shares
the parameters N, r, γ, Np with the original metabolic net-
work. Analogously, a corresponding maximalistic network
is produced by using the template (13). For example, Fig-
ure 4 shows the metabolic network for Escherichia coli
(r = −0.162, I(r) = 0.49 bits), while Figures 5 and 6
show its corresponding minimalistic (r = −0.162, I(r) =
0.20 bits) and maximalistic (r = −0.162, I(r) = 0.68 bits)
networks3. It is evident that, although the three illustrated

3 The networks shown in Figures 5 and 6 were constructed
using a method described in the Appendix (Sect. 6). The
method was used only to visualise the networks, while the in-
formation content and assortativeness were computed directly
using the distribution ej,k.
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Fig. 5. Class A network corresponding to the Escherichia coli
metabolic network: r = −0.162, I(r) = 0.20 bits; γ = 2.1, Np =
430. Figure is drawn with Cytoscape 2.5.1.

networks have the same assortativeness and the scaling
exponent of the power-law degree distribution, they differ
topologically, and in terms of the information content. Ta-
ble 1 demonstrates that information I(r) is always within
bounds defined by the information IA(r) for the corre-
sponding minimalistic network and the information IB(r)
for the corresponding maximalistic network. Analogously,
Tables 2–6 empirically verify the respective bounds for
other networks.

5.3 Power-law of information-assortativeness
dependency

We studied the relationship I(r) for class A networks, pro-
ducing the following approximation:

I(r) =
{

a1 rb1 + c1 ed1 r − c1 if r ≥ 0
a2 |r|b2 + c2 ed2 |r| − c2 if r < 0

(14)

Fig. 6. Class B network corresponding to the Escherichia coli
metabolic network: r = −0.162, I(r) = 0.68 bits; γ = 2.1, Np =
430. Figure is drawn with Cytoscape 2.5.1.

where |r| denotes the absolute value of assortativeness r,
and the coefficients ai, bi, ci, di depend on variables γ and
Np. The critical assortativeness at which the respective
I(r) curve attains its minimum is denoted as r. In general,
r is specific for each degree distribution qk, i.e. for each
pair of γ and Np, however for class A networks, r = 0, and
I(0) = 0 for all γ and Np. For a symmetric distribution
qk, equation (14) reduces to

I(r) = a |r|b + c ed |r| − c. (15)

Class B networks can be characterized in a similar way:

I(r) =
{

a3 (r − r)b3 + c3 ed3 (r−r) + g3 if r ≥ r

a4 |r − r|b4 + c4 ed4 |r−r| + g4 if r < r

for a symmetric distribution qk, r = 0.
The main term of equations (14) and (15) is the infor-

mation power-law ai |r|bi which dominates the correction
term ci edi |r|. The rate coefficient bi(Np, γ) is the scaling
exponent of the information power-law, reflecting how the
amount of Shannon information I would change with re-
spect to a change in assortativeness r. Figure 7 shows the
rate coefficient b1(Np, γ) against Np for various fixed ex-
ponents γ. This dependency can be approximated by a
function which is dominated by a power law for small Np:

b1(Np, γ) = μ(γ)Nν(γ)
p + λ(γ) (16)

where ν(γ) < 0. For example, b1(Np, 1.0) ≈ 1.3N−0.28
p +

1.04, and b1(Np, 3.0) ≈ 0.75N−0.6
p + 1.47.
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where ν(γ) < 0. For example, b1(Np, 1.0) ≈ 1.3N−0.28
p +

1.04, and b1(Np, 3.0) ≈ 0.75N−0.6
p + 1.47.

Conversely, Figure 8 traces the rate coefficient
b1(Np, γ) against γ for various fixed cut-offs Np. It can
be observed that the rate b1(Np, γ) tends to plateau when
4 < γ < 5, and quickly diminishes when γ > 5. This cre-
ates a local “stability” region on the Np × γ surface when
Np > 20 and 4 < γ < 5. The stability region is also visible
in Figure 9 that shows the dependency of the correction
coefficient d1(Np, γ) on γ for various fixed cut-offs Np.

It can be also observed that the correction coefficient
d1(Np, γ) moves toward its minimum as Np grows and the
exponent reduces below γ = 3.0 (Fig. 9). This indicates
that in many real-world networks that are typically char-
acterized by larger Np’s and the range 2.0 < γ < 3.0, the
correction term plays a minor role.

We verified this conjecture by considering the assor-
tativeness range −0.4 ≤ r ≤ 0.6, which corresponds to
real-world networks (including social networks). In this
case, it was observed that there is no need for a correction
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Fig. 9. The dependencies between the correction coefficient d1

and power law exponents γ, for different Np.

term at all, and the relationships (14) and (15) can be
simplified as follows:

I(r) =
{

a1 rb1 if r ≥ 0
a2 |r|b2 if r < 0.

(17)

For a symmetric distribution qk, equation (17) reduces to

I(r) = a |r|b. (18)

The resulting coefficients b1(Np, γ) do not differ from
the coefficients obtained by fitting the relationships (14)
and (15) and shown in Figures 7 and 8 – more precisely,
the difference is within 0.004 or 0.26%.

5.4 Slope and stability regions

If one attempts to optimize networks according to their
information content (analogous to optimizing communica-
tion channels), assortativeness becomes the main factor:
the less non-assortative is the network, the more infor-
mation it can contain. The limit on maximally attainable
disassortativeness rm implies that it is easier to maximize
the information content by increasing assortativeness to-
ward r = 1, as I(r = rm) ≤ I(r = 1).

In the following analysis (based on the rates for the
lower bound, i.e. class A), we point out that new links
and new node types (i.e., different degrees) in an evolving
network affect assortativeness r much more than they do
the degree distribution parameters Np and γ. In other
words, it is much easier to produce and explore a candidate
network with a different r, rather than different Np and/or
γ.

When optimization or evolutionary processes explore
the slope region, 2.0 < γ < 3.0 (Fig. 8), there is more
freedom to generate and evaluate candidate networks. In
this region, even a small change in the scaling exponent
γ brings a reward in a higher rate of information b. Thus,
the information content can be changed easily by modi-
fying only the assortativeness r, i.e. in the slope region,
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the information content is most sensitive to assortative-
ness. Hence, the search becomes more efficient, and net-
works with higher information content are found more
easily. This feature may explain why the exponents γ of
real-world scale-free networks are mostly within [2.0, 3.0]
range.

The slope region is upper-bounded by the stability re-
gion, 3.8 < γ < 5.0 (Fig. 8). Within the stability region,
the different curves I(r) tend to be close to each other
when one varies Np and γ. For example, the relationships
between information and assortativeness for class-A net-
work (analogous to the one shown in Fig. 3) for γ = 4.0
and γ = 5.0 would be very similar if Np > 20. The stability
region creates a further structure in the search-space de-
fined by Shannon information. When networks evolve (or
are explored in the search-space) by changing either or
both the cut-off Np and scaling exponent γ, the informa-
tion content tends to stay constant in the stability region
as long as the assortativeness is maintained at the same
level. In other words, the informational fitness landscape
of evolving networks is smoother in the stability region:
the expense taken to modify Np and/or γ is not rewarded
with more freedom to produce a higher information con-
tent.

At the lower range of scaling exponent, γ < 2.0
(Fig. 8), the freedom to vary the information content is
reduced as well – simply because the rate coefficient b is
smaller for the high (e.g. real-world) cut-offs Np.

6 Conclusion

We analyzed Shannon information of scale-free networks
in terms of their assortativeness. Noting that the same
assortativeness r could correspond to different informa-
tion values I, we introduced a classification of networks
according to the dependency of the distribution e

(r=r′)
j,k on

the assortativeness r′, with the intention that, within a
class, the same distribution qk and the same assortative-
ness r result in the same information I(r). We observe
that the two identified classes of networks provide lower
and upper bounds, in terms of Shannon information, for
the considered real world networks.

We also demonstrated that the information content of
scale-free networks depends non-linearly (and asymmet-
rically) on the absolute value of the assortativeness. The
identified dependency is symmetric when the correspond-
ing remaining degree distribution is symmetric. We fur-
ther studied class A assortative networks, and identified
slope and stability regions on the Np × γ surface. In the
slope region, there is more freedom to generate and eval-
uate candidate networks since (i) the information content
can be changed easily by modifying only the assortative-
ness r, and (ii) even a small change in the scaling exponent
γ brings a reward in a higher rate of information b. This
feature may explain why the exponents γ of real-world
scale-free networks are within [2.0, 3.0].

The optimization criteria defined according to infor-
mation content of networks would allow us to advance

research into networks resilience under node removal or
percolation/diffusion of adverse conditions. For example,
one may consider a task of information-cloning of a scale-
free network [23], given its fragment and some topological
properties of the original network. The “cloning”, inter-
preted information-theoretically, would aim at attaining
an equivalent information content of the resulting network
which may disagree with the original one in terms of spe-
cific node to node connections.

Appendix A

In order to construct a network with a specific assortative-
ness value r, given a degree distribution pk and a network
size N , we used the Assortative Preferential Attachment
(APA) method [23]. The remaining degree distribution qk

is obtained using equation (1).
We use the ej,k computed by templates (10)–(12) for

class A, or (13) for class B, to grow a desired network.
We start by creating a ‘source pool’ and ‘target pool’ of
unconnected nodes, each of size N0 = N/2, with the in-
tention of sequentially adding the nodes from source pool
to target pool. In the traditional preferential attachment
method [4], the probability of a new link between a source
and a target node depends only on the degree of the target
node. In the APA method, however, the probability would
depend on the degrees of both source and target nodes. We
therefore, probabilistically assign an “intended degree” k
to each node in both pools such that the resulting degree
distribution is pk.

Then we assign a probability distribution μ(k, j0), . . . ,
μ(k, jNp−1) to each target node with the degree k, where
μ(k, j) is the probability of a source with degree j joining
the target node with the degree k. The probability μ(k, j)
is calculated as μ(k, j) = ej,k/pj, then normalized such
that

∑

j

μ(k, j) = 1. The distribution μ(k, j) has to be

biased by division by pj , because each source node with
degree j does not occur in the source pool with the same
probability. In other words, sequential addition would not
maintain ej,k, and the biased probability μ(k, j) accounts
for that. Once μ(k, j) is generated, each source node with
degree j is added to the target pool and forms a link to a
target node with degree k with probability μ(k, j).

For example, if there are twice as many source nodes
with degree j2 than those with degree j1 (i.e., p(j2) =
2 p(j1)), while e(k, j2) = e(k, j1), then the biased proba-
bilities μ(k, j1) and μ(k, j2) would be such that μ(k, j2) =
e(k, j2)/p(j2) and μ(k, j1) = e(k, j1)/p(j1) = 2μ(k, j2).
This ensures that nodes with degree j1 (represented twice
as scarce as the nodes with degree j2) would find it twice
as easy to form a link with a target node with degree k.

When a target node with k degrees forms its last, k-th,
link, all its probabilities μ(k, j) are set to zero (i.e., this
node will not form any more links). The grown network
will thus have the desired joint distribution ej,k, and hence
the desired assortativeness r′.
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