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Abstract

Information-driven evolutionary design has been proposed as
an efficient method for designing self-organized multi-agent
systems. Information transfer is known to be an important
component of distributed computation in many complex sys-
tems, and indeed it has been suggested that maximization
of information transfer can give rise to interesting behavior
and induce necessary structure in a system. In this paper,
we report the first known application of a direct measure of
information transfer, transfer entropy, as a fitness function
to evolve a self-organized multi-agent system. The system
evolved here is a simulated snake-like modular robot. In the
most fit snakebot in the final generation, we observe coherent
traveling information transfer structures. These are analogous
to gliders in cellular automata, which have been demonstrated
to represent the coherent transfer of information across space
and time, and play an important role in facilitating distributed
computation. These observations provide evidence that using
information transfer to drive evolutionary design can produce
useful structure in the underlying system.

Introduction
The principle of self-organization is well known to offer the
advantages of flexibility, robustness and scalability over cen-
tralized system designs (Prokopenko et al., 2006a). Most
self-organized solutions are currently designed using a ge-
netic algorithm of some form, with fitness functions mea-
suring achievement of the task required of the system (task-
based evolution). Several authors have recently been investi-
gating the potential for information-driven evolutionary de-
sign to push the advantages of self-organization even further,
e.g. (Prokopenko et al., 2006a; Polani et al., 2007; Klyu-
bin et al., 2005; Sporns and Lungarella, 2006). This con-
cept proposes the use of information-theoretical measures
of the information processing carried out by the system as
generic fitness functions in evolutionary design. From an en-
gineering perspective, template-based evolution for generic
information processing skills could be simpler and afford a
framework based approach to such design of self-organized
systems. It also provides to us the potential to better under-
stand the evolved solutions, and more importantly the op-
portunity to study and understand the emergence rather than
engineering of intelligence (Polani et al., 2007).

We believe information-driven self-organization is best
facilitated using measures of the information dynamics of
distributed computation (Lizier et al., 2007). Any task
we wish to evolve the system to solve involves a dis-
tributed computation, so evolving for the fundamental build-
ing blocks of the computation is a direct way to allow that
computation to emerge. We could evolve directly for a par-
ticular computational property (e.g. information storage as
opposed to transfer), or for a mix of those properties.

Information transfer has been suggested to be a particu-
larly important fitness function here. It has been conjectured
that information transfer can give rise to interesting behav-
ior and induce necessary structure in a multi-agent system
(Prokopenko et al., 2006a). One inspiration of this view-
point is the concept of empowerment (Klyubin et al., 2005),
which refers to an agent’s self-perception of its influence
over its environment. Alluding to (but not directly measur-
ing) information transfer, it is quantified as the channel ca-
pacity between an agent’s actuators and sensors through the
environment. Maximization of empowerment has been sug-
gested to be an intrinsic selection pressure1. With or without
the presence of explicit actuator-sensor channels, we expect
information transfer to be a useful fitness function because
of its important role in distributed computation.

Here, we present the first experiment of the use of a direct
measure of information transfer, transfer entropy (Schreiber,
2000), as the sole fitness function in an evolutionary de-
sign task. An initial aim of the experiment is to check
whether information transfer underpins co-ordinated mo-
tion, as was suggested in previous work (Prokopenko et al.,
2006a). More importantly, we aim to investigate what type
of behavior emerges when a system is evolved to maximize
information transfer. Much previous work on information-
driven evolution has sought to confirm whether it can ap-
proximate direct evolution for a given task. Here, we sim-
ply seek to investigate what type of solution or computation

1The justification or otherwise of the suggestion that natural
evolution is driven by the intrinsic forces of information processing
is irrelevant to whether information-driven evolutionary design can
be used as a successful tool for artificial systems.

Artificial Life XI 2008  366 



is generated by evolution for information transfer, and hy-
pothesize that it will induce useful computation in the sys-
tem. Our findings will help us to understand the role that
information transfer can play in a unified framework for
information-driven evolutionary design, focusing on the in-
formation dynamics of distributed computation.

We use a snake-like modular robot (the snakebot) for ex-
perimentation: information structure has been observed to
emerge previously with a fitness function for fastest motion
(Prokopenko et al., 2006b), and conversely fast motion has
emerged from evolution with a measure of co-ordination as
the fitness function (Prokopenko et al., 2006a). We measure
information transfer using the transfer entropy (Schreiber,
2000) between neighboring modules of the snakebot, and
evolve the snakebot to maximize this quantity. Information
transfer in this fashion could be utilized by the snake in lead-
ing to co-ordinated motion between the modules, communi-
cating information about obstacles, or driving new behaviors
in a given direction along the snake.

We report that coherent traveling information transfer
structures were observed to emerge (using local transfer en-
tropy (Lizier et al., 2008a)) in the evolved snakebot. We
say “emerged” because while high information transfer was
selected for, local coherent structures were not part of the
specification. This is an important finding, because these
structures are analogous to glider structures in cellular au-
tomata (CAs). Gliders are known to be the information
transfer agents in CAs, providing for long-range correlations
across space and time and playing a fundamental role in the
distributed computation carried out in the CA (Lizier et al.,
2008a). As such, we have provided evidence that using a di-
rect measure of information transfer as a fitness function in
information-driven evolutionary design can indeed produce
useful structure in the system.

Information-driven evolution
Task-based evolution, the incumbent method of designing
self-organized systems, can be impractical. Hand-crafting
fitness functions for every task can be time-consuming and
tedious, and requires specialized human understanding of
the task. It has the potential to under-specify the problem
(thereby solving a different task) or perhaps over-specify it
(leading to an inflexible design). Also, the intelligent de-
signer may not be completely sure of how to measure per-
formance of the required task, or this may be difficult (e.g.
measuring speed may require extra sensors). Furthermore,
if the initial task-based fitness landscape is flat and features
no gradients, task-based evolution has no foothold around
which to begin designing a solution. Finally, evolution often
delivers intricate solutions for which (human) system man-
agers cannot understand the inner workings: this is particu-
larly undesirable for critical systems where maintenance or
prediction of behavior is required.

As an alternative, information-driven evolutionary design

proposes the use of information-theoretic measures to de-
sign the required information processing structure in self-
organized systems. This has been prompted by observations
of complexity to grow or necessary information-theoretic
structure to emerge during task-based evolution. Growth of
complexity during evolution has been observed by Adami
(2002) (measuring “physical complexity” in the Avida sim-
ulation system) and Yaeger and Sporns (2006) (measuring
neural complexity of evolved agents in the PolyWorld sim-
ulation system). Looking at evolution for particular tasks,
Prokopenko et al. (2006b) observed co-ordination (mea-
sured as excess entropy (Crutchfield and Feldman, 2003))
to increase in snakebots evolved for maximum velocity, and
Baldassare et al. (2004) observed a decrease in entropy in a
swarm evolved for co-ordinated motion.

These observations suggest that such information-
theoretic metrics could be used themselves in information-
driven evolutionary design. This idea is fundamentally
based on the theory that information structure is vital to
the emergence of self-organized intelligence (Polani et al.,
2007). The concept could provide a consistent framework
for the evolutionary design of self-organized systems, using
template-based evolution for required computational tasks.
This framework would be able to produce useful structure
where task-based evolution faces initially flat task-based fit-
ness landscapes, perhaps serving as a platform from which
to launch better-equipped task-based evolution. Further-
more, it may provide solutions which are simpler for hu-
mans to understand in terms of the underlying information
dynamics. Perhaps most important is the potential for this
approach to provide insight into the emergence rather than
engineering of intelligence (Polani et al., 2007), and thereby
facilitate unsupervised learning.

Several examples of successful information-driven evolu-
tionary design exist in the literature. Maximization of em-
powerment has been shown to induce a necessary structure
in agent’s behavior by Klyubin et al. (2005). Sporns and
Lungarella (2006) have evolved hand-eye co-ordination to
grab a moving object using maximization of neural com-
plexity, and demonstrated that this solution contained more
intrinsic diversity than solutions from task-driven evolution;
the increased diversity may afford greater flexibility to the
system. Prokopenko et al. (2006a) were able to evolve fast-
moving snakebots using maximization of an information-
theoretic measure of co-ordination. Also, Sperati et al.
(2007) have observed interesting periodic behavior and com-
plex structure in groups of robots which were evolved to
maximize their mutual information.

We suggest that the information dynamics of distributed
computation (Lizier et al., 2007, 2008a) provide the most in-
tuitive basis for information-driven evolution. These infor-
mation dynamics are the primitive functions of Turing uni-
versal computation, i.e. information storage, transfer and
modification. Any task we wish the system to achieve in-
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volves some form of computation. As such, using a frame-
work for distributed computation allows us to target the evo-
lution toward the computational requirements of the task at
hand, i.e. selecting either the most relevant computational
function as the fitness function, or balancing the functions in
a more complex manner. Importantly, using such a frame-
work provides a basis through which to understand the com-
putation carried out by the evolved solution. Also, guiding
a system toward the building blocks of distributed computa-
tion is perhaps the most intuitive way to facilitate the emer-
gence of collective intelligence.

Information transfer is an important candidate fitness
function here. It has been observed to be a critical part
of the dynamics of many complex systems, for example
being manifested in dipole-dipole interactions in micro-
tubules which give rise to self-organization there (Brown
and Tuszynski, 1999). Another important example are par-
ticles or gliders in CAs (e.g. see Fig. 1), which are coher-
ent traveling information transfer structures in those systems
(Lizier et al., 2008c). Much importance has been placed on
the role of gliders in CA dynamics; in fact, they have been
demonstrated to transport information for the distributed
computation carried out in CAs (Lizier et al., 2008c). For
example in a density-classification task, gliders appear to
transport information about the density in the region of the
CA where they originated, with glider collisions processing
this information to make a decision about the overall den-
sity (Mitchell et al., 1994). Information transfer is also re-
lated to the concept of empowerment (Klyubin et al., 2005),
with much importance placed on the maximization of the
capacity of the information channel between an agent’s ac-
tuators and sensors here. Importantly also, it has long been
conjectured that information transfer is maximized in the
vicinity of an order-chaos phase transition (Langton, 1990),
where critical dynamics are said to facilitate the emergence
of complex computation. Several authors have since inferred
this conclusion from related measures (Solé and Valverde,
2001), however evidence from a directed, dynamic mea-
sure of information transfer has only recently been provided
(Lizier et al., 2008b). In the following section, we describe
this measure of information transfer.

Information transfer
Our measure of information transfer is of course found in
the domain of information theory (MacKay, 2003), which is
proving to be a useful framework for the analysis and de-
sign of complex systems, e.g. (Prokopenko et al., 2006a).
The fundamental quantity in this domain is the (Shannon)
entropy, which represents the uncertainty in a sample x of a
random variable X: HX = −

∑
x p(x) log2 p(x) (all with

units in bits). The joint entropy of two random variables X
and Y is a generalization to quantify the uncertainty of their
joint distribution: HX,Y = −

∑
x,y p(x, y) log2 p(x, y).

The conditional entropy of X given Y is the average un-

(a) (b)

Figure 1: Elementary CA rule 110. (a) Raw states. (b) Local
transfer entropy with k = 16 (for transfer one step to the left
per time step) highlights glider structures.

certainty that remains about x when y is known: HX|Y =
−

∑
x,y p(x, y) log2 p(x|y). The mutual information be-

tween X and Y measures the average reduction in uncer-
tainty about x that results from learning the value of y, or
vice versa: IX;Y = HX − HX|Y . The conditional mu-
tual information between X and Y given Z is the mutual in-
formation between X and Y when Z is known: IX;Y |Z =
HX|Z −HX|Y,Z .

The mutual information has previously been used as a
de facto measure for information transfer (e.g. by Solé
and Valverde (2001)), however this approach is criticized
by Schreiber (2000) as a symmetric measure of statically
shared information. To address these concerns, Schreiber
introduced the transfer entropy to quantify the information
transfer between a source and a destination agent as the av-
erage information provided by the source about the desti-
nation’s next state that was not contained in the past of the
destination. This formulation provides a properly directional
and dynamic measure of information transfer. The transfer
entropy is the average mutual information between the pre-
vious state of the source2 yn and the next state of the desti-
nation xn+1, conditioned on the past of the destination x

(k)
n :

TY→X(k) =
∑
un

p(un) log2

p(xn+1|x(k)
n , yn)

p(xn+1|x(k)
n )

. (1)

This average is over all state transition tuples un =
(xn+1, x

(k)
n , yn). From another perspective, it is also an av-

erage over a local transfer entropy (Lizier et al., 2008c) at
all observed time points:

tY→X(n + 1, k) = log2

p(xn+1|x(k)
n , yn)

p(xn+1|x(k)
n )

, (2)

TY→X(k) = 〈tY→X(n, k)〉 (3)
2The transfer entropy can be formulated using the l previous

states of the source. However, where only the previous state is
a causal information contributor, we set l = 1 to measure direct
transfer only at step n.
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In general, these measures are only completely accurate in
the limit k →∞ (Lizier et al., 2008c), since this removes all
information that was already in the history of the destination
from being mistaken as transfered. This is computationally
infeasible however, so we use as large a history k as is facil-
itated by our observation set.

The transfer entropy can also be formulated to condition
on the states of all other causal information contributors to
the destination, so as to completely account for the contri-
bution of the source Y . This form is known as the complete
transfer entropy (see Lizier et al. (2008c)). The formulation
in Eq. (2) is then labeled the apparent transfer entropy (note:
in this paper, we refer to this form unless otherwise stated).

The transfer entropy has been studied in a number of in-
teresting applications, for example in characterizing infor-
mation flow in sensorimotor networks by Lungarella and
Sporns (2006). Bertschinger et al. (2006) used the transfer
entropy to investigate the distinction of a system from its en-
vironment, and the autonomy of the system. Studies of the
local transfer entropy in CAs provided the first quantitative
evidence for the long-held conjecture that gliders are the in-
formation transfer agents therein (Lizier et al., 2008c) (see
Fig. 1). Application to random boolean networks (RBNs)
suggests that the apparent transfer entropy is maximized in
the vicinity of a phase transition from ordered to chaotic
behavior, while the complete transfer entropy continues in-
creasing into the chaotic regime (Lizier et al., 2008b). Large
apparent transfer entropy appears to indicate that the dy-
namics support coherent information transfer (in the form
of gliders in CAs) as an important component of complex
distributed computation (Lizier et al., 2008a).

To compute the transfer entropy for continuous variables,
a simple approach is to discretize the continuous variables
and apply Eq. (1), however with a slight increase in ef-
fort, one can remain in the continuous regime. In doing
so, Schreiber (2000) recommends using the method of ker-
nel estimation to estimate the required probabilities, rather
than an approach based on correlation integrals. (The same
technique is used under different guises in computing the
“pattern entropy” by Dettmann and Cohen (2000) and the
“approximate entropy” by Pincus and Singer (1996)). This
method has been used, for example, to compute transfer en-
tropy in signal transduction by calcium ions by Pahle et al.
(2008). With the kernel estimation method, the joint proba-
bility of the state transition tuple un = (xn+1, x

(k)
n , yn) for

example is estimated by counting similar tuples:

p̂r(un) =
1
N

∑
n′

Θ

∣∣∣∣∣∣
 xn+1 − xn′+1

x
(k)
n − x

(k)
n′

yn − yn′

∣∣∣∣∣∣− r

, (4)

where by default Θ is the step kernel (Θ(x > 0) = 1,
Θ(x ≤ 0) = 0) using the precision r, and the norm | · |
is the maximum distance, though other choices are possible.
The average transfer entropy TY→X(k) is then computed

Figure 2: Snakebot

as the average of local transfer entropies (see Eq. (3) and
Eq. (2)), where each local transfer entropy uses these kernel
estimations to compute the relevant probability distribution
functions. That is, computation of the average transfer en-
tropy for continuous variables is necessarily a computation
over each local point in time rather than over all possible
state transition tuples. Here, we will present the first use of
the local transfer entropy values for continuous variables.

Evolving the snakebot for maximum
information transfer

The snakebot is a snake-like modular robot, introduced in
(Tanev et al., 2005), which is simulated in the Open Dynam-
ics Engine (ODE). As shown in Fig. 2, it consists of a set of
identical spherical morphological segments which are linked
by universal joints. The joints each have two actuators for
joint rotation, which are oriented vertically and horizontally
in the initial standstill position of the snakebot, and all have
identical angle limits. No anisotropic friction between the
morphological segments and the surface is considered. The
genome for the snakebot is an algebraic expression for the
desired turning angles of its horizontal and vertical actua-
tors as a function of time and actuator index. The periodic
functions sin and cos are included in the function set, pro-
viding support for periodic gaits. The turning angles how-
ever are constrained by interactions between the segments
and with the terrain; as such the actual actuator angles rep-
resent the emergent dynamics. Here, αi,n and βi,n represent
the actual horizontal and vertical turning angles respectively
at time step n, where i is the actuator index (so 1 ≤ i ≤ S
where S = 14 is the number of joints), and 1 ≤ n ≤ N for
N = 1800 time steps in the simulation run.

Initial experiments to evolve fastest motion in any direc-
tion indicated that side-winding motion (i.e. locomotion pre-
dominantly perpendicular to the long axis of the snakebot)
provided superior speed characteristics (Tanev et al., 2005).
As previously mentioned, subsequent experiments observed
the increase in co-ordination (as excess entropy) with this
evolution (Prokopenko et al., 2006b), and then evolved sim-
ilar fast moving side-winding locomotion using this mea-
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sure of co-ordination as a fitness function (Prokopenko et al.,
2006a). In capturing correlation across space and time, the
(two-dimensional) excess entropy is something of an over-
all measure of distributed computation which balances the
underlying components of information storage and transfer.
Here, we evolve the snakebot using transfer entropy, in or-
der to maximize the information transfer component of dis-
tributed computation. It was suggested in (Prokopenko et al.,
2006a) that information transfer underpinned co-ordinated
motion. An information transfer is certainly required in a
transient sense to achieve co-ordinated motion, but the level
of information transfer in this initial phase may not be very
significant compared to the information transfer averaged
over longer experimental periods for other behaviors. The
evolution of the snakebot here will take place in a flat envi-
ronment. We will observe what types of behavior emerge as
a result of selecting for information transfer.

In evaluating the fitness of each snakebot after it is sim-
ulated for N time steps, we compute the average transfer
entropy Ti+1→i(k) between each pair of consecutive mod-
ules i + 1 and i, in the direction from the tail toward the
head (i.e. decreasing module number i). The transfer en-
tropy is computed using the time series of actual horizontal
turning angles αi,n. Kernel estimation is used with these
continuous values, with r set to one quarter of the standard
deviation of the turning angles. Also, we use the default step
kernel and maximum distance norm, ignoring matched pairs
within 20 time steps and neighboring modules to avoid spu-
rious dynamic correlations (as recommended by Schreiber
(2000)). The direction of tail toward head is selected be-
cause each module only applies desired turning angles to
the actuators in front of it (i.e. in the direction of the head),
thereby giving preferential treatment to information travel-
ing in this direction. Although it is possible for information
to be transferred across more than one joint per time step, we
consider only consecutive pairs since this is likely to be the
dominant transfer mode. Also, as per footnote 2, we only
consider transfer from a single previous state of the source
variable, so as to consider information transferred directly at
the given time step. We use a past history length k = 30
(as for the correlation entropy calculations in Prokopenko
et al. (2006a)). This is large enough to eliminate information
storage from the calculation (see Results), while allowing
adequate sampling of the underlying distributions (because
the presence of sin and cos functions mean that the emer-
gent turning angle sequences are generally quasi-periodic
and therefore much of the state space of α

(k)
i,n remains un-

explored). Our fitness function is then the average of these
transfer entropies over all S − 1 consecutive module pairs
for the given snakebot:

Ttail→head(k) =
1

S − 1

S−1∑
i=1

Ti+1→i(k). (5)

Figure 3: Snakebot fitness (average transfer entropy
Ttail→head(k = 30)) per generation, plotted for the best per-
former in each generation.

The Genetic Programming (GP) techniques used for
snakebot evolution are described by Tanev et al. (2005).
The snakebots evolve within a population of 200 individuals,
with the best performers selecting using the fitness function
described above. No minimum limit is placed on how far
the snakebot moves, since we are not evolving for fast loco-
motion. The selection is based on a binary tournament with
selection ratio of 0.1 and reproduction ratio of 0.9. Random
subtree mutation is used with a ratio of 0.01.

Results and discussion
First, we note that snakebots exhibiting a high degree of
co-ordinated motion (as exemplified by most fit individual
from (Prokopenko et al., 2006a)) were found to have sig-
nificantly lower transfer entropy than individuals specifi-
cally evolved to maximize transfer entropy (e.g. 0.007 bits
versus 0.175 bits for the most fit snakebot here). Highly
co-ordinated snakebots exhibited very short transients be-
fore becoming co-ordinated, and minimal transfer entropy
in their ongoing behavior. Co-ordinated motion is certainly
more strongly associated with memory (in fact is a dis-
tributed memory (Lizier et al., 2008a)) than information
transfer. When neighboring modules achieve perfect co-
ordination, they have effectively reached a periodic attrac-
tor: their next states are completely predictable from their
individual pasts, and so no additional information from the
neighbor is measured as transfer entropy. It is possible that
transfer entropy might be measured to be higher for snake-
bots attempting co-ordinated motion in a challenging envi-
ronment, where information transfer in the longer and more
significant transient toward co-ordination may play an im-
portant role in the dynamics.

In our evolution of snakebots for transfer entropy, the
growth in the average transfer entropy Ttail→head(k = 30)
of the most fit snakebot in each generation is shown in Fig. 3.

We will focus on the most fit individual in the final (57th)
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generation as the result of this evolution, which had an aver-
age transfer entropy of 0.175 bits between neighboring mod-
ules toward the head per time step. This snakebot did not
display a fast, well co-ordinated side-winding locomotion.
Instead, it displayed a complex form of wriggling behavior,
where thrashing of the tail appeared to drive new behavior
along the body of the snake, achieving a slow movement to
the side3. The dynamics of this behavior are clearer when
examining the time-series of the actual horizontal turning
angles αi,n, as displayed in Fig. 4(a). Here, we see that
coherent waves of behavior are consistently traveling along
the snakebot, from the tail toward the head. Each wave in-
volves the modules turning in alternating directions along
the snake (visible in color image online), reaching a maxi-
mum angle then coming back to a rest position. The modules
then swap their turning angles in the next wave. Importantly,
these waves are not completely periodic, allowing scope for
information transfer effects.

Already, we note a fairly clear correspondence to emer-
gent traveling structures in microtubules and gliders in CAs,
however to confirm the information transfer properties, we
examine the local transfer entropy profile in Fig. 4(b). The
local transfer entropy profile here tells us much more about
the snakebot dynamics than the average transfer entropy
does (as was observed for CAs in (Lizier et al., 2008c)). As
expected, we confirm that we have coherent traveling waves
of information transfer moving along the snakebot from the
tail toward the head, which coincide in direction and ap-
proximately in time with the time-series waves previously
observed. As an example, note the images of the snake-
bot in Fig. 5 with modules colored to indicate local transfer
entropy (also, videos with the modules of the snake high-
lighted according to their local transfer entropy are available
online, see footnote 3). We can be confident that the infor-
mation transfer measured is not misattributed information
storage, because our use of k = 30 considers a longer past
history than the length of the time-series waves here. Note
that these coherent transfer structures were not observed in
fully-coordinated or random snakebots.

There is a wide variation in the types of such informa-
tion transfer structures observed here: some move faster
than others (indicated by a flatter structure), some are more
highly localized in time (thinner structures), some contain
higher local transfer entropies (darker coloring), and some
do not coherently travel the whole way along the body of
the snakebot. Importantly, none of these differences are de-
tectable by superficial examination of the time-series of the
actual actuator angles. Indeed, apart from their coincidence
in direction and approximately in time, there is little corre-
spondence between the time-series waves and the informa-

3Videos of the snakebot, showing raw motion and local trans-
fer entropy are available at http://www.it.usyd.edu.au/∼jlizier/
publications/08ALifeSnakebotTe or http://www.prokopenko.net/
modular robotics.html

(a) (b)

Figure 4: Local apparent transfer entropy highlights “glid-
ers” in the evolved snakebot. (a) Raw actuator turning angles
for each of the 13 destination modules (head at left, tail at
right) of the snakebot for 76 consecutive time steps (time in-
creases down the page): grayscale represents a positive turn-
ing angle, yellow-red (color online) represents a negative
turning angle; range is -50 to 50 degrees. (b) Local transfer
entropy ti+1→i(n, k = 30) into each of the 13 information
destination modules of the snakebot, between consecutive
modules in the tail → head direction: grayscale, range 0.0
bits (white) to 2.8 bits (black).
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(a) (b) (c)

Figure 5: Snakebot modules colored to indicate incoming local transfer entropy (black is 0.0 bits, red is 2.8 bits; color online)
from neighboring module toward the tail, for three consecutive time steps. The information transfer from the tail appears to
communicate a straightening behavior here.

tion structure that is obvious to the observer. Certainly, there
is no simple method of using the time-series waves to infer
the location in time of the local information transfer struc-
tures: these are observed to begin and end at various time
points within the time-series waves. Local transfer entropy
reveals the precise space-time dynamics of the manner in
which the tail drives new behavior in the snakebot in a way
not possible by examining the time-series alone.

As coherent traveling local information transfer, these
structures are clearly analogous to gliders in CAs (see
Fig. 1). This finding is significant because of the important
role that gliders play in CA dynamics, where they coherently
transfer information relevant to the collective computation
of the CA. We previously noted that the coincidence of glid-
ers and coherent information transfer with a maximization of
(apparent) transfer entropy (Lizier et al., 2008a). Here, we
have demonstrated the emergence of glider-like structures
when (apparent) transfer entropy is optimized, without ex-
plicitly selecting for such local coherence. This suggests that
coherent glider-like structures are the most efficient mode of
(apparent) information transfer. This has significant impli-
cations for glider-like structures observed in natural systems,
e.g. dipole-dipole interactions in microtubules (Brown and
Tuszynski, 1999), which could have evolved to exploit this
efficient mode of information transfer where coherent com-
munication or effect over some distance is beneficial.

The coherence of glider structures is of particular impor-
tance to the computation in CAs; without coherence of in-
formation transfer, complex computation does not appear to
take place (Lizier et al., 2008a,b). A second requirement for
such truly distributed computation though is bidirectional
information transfer. Here, with strong information transfer
encouraged in one direction only, although we have demon-
strated the emergence of an important building block for
non-trivial computation, we have evolved only a trivial type
of computation. (This is effectively the reason that there are
very few points of negative local transfer entropy measured
in the snakebot here). In future work, we will build on our
results here to evolve bidirectional information transfer for
true distributed computation.

Conclusion
We have presented the first experiment of the use of transfer
entropy as a generic fitness function for information-driven
evolutionary design. We have demonstrated that maximiz-
ing information transfer in this manner can lead to the emer-
gence of coherent transfer structures which, as manifested
by gliders, are known to underpin distributed computation
in CAs. Here, this useful generic skill was not fully capital-
ized on by the snakebot, but the important finding is that the
use of information transfer as a fitness function led to the
emergence of this computational capability. Also, our ex-
periment implies that glider-like structures are the most effi-
cient mode of coherent information transfer, which is itself
significant insight into the nature of information transfer.

All agent-based systems compute; indeed it is their com-
putation that makes them useful to us. Here, the snake com-
putes where to move. While information transfer does not
appear to be important for co-ordinated motion in flat envi-
ronments, it could underpin computation for tasks such as
successful navigation in challenging environments, where
different parts of the body could sample many sections of
the environment in parallel, and communicate information
about the environment along the structure. Information
transfer could be used to develop the required computational
capability for tasks such as these in future work.

We intend to explore the use of information transfer
in information-driven evolutionary design in other settings
where bidirectional information transfer may be required
for distributed computation. We also intend to investigate
the use of the other information dynamics of computation
(information storage and modification) (Lizier et al., 2007)
in such design, and explore the circumstances under which
each should be used and indeed how they can be used to-
gether.
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