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Abstract

In this paper we proposed and veried a
methodology underlying the designof localisedal-
gorithms for complex multi-agent systems,exem-
plied by self-monitoring aerospacevehicles. In
particular, we consideredthe emergenceof self-
organisingimpact boundariesand recovery mem-
branes, separating damaged and/or potentially
recovering regions from lessa ected agerts. In
order to identify phase transitions in system's
dynamics, we investigated graph-theoretic and
information-theoretic metrics, and incorporated
them within tness functions for a genetic algo-
rithm. The GA involved a generation gap strat-
egy and targeted a responsetime as well as spa-
tial connectivity, temporal persistenceand size of
emergert boundaries and membranes. A variety
of stable spatiotemporal patterns were produced
under selection pressure, highlighting the poten-
tial for the designat the edge of chaos

1. Intro duction

Robust or \ageless" aerospacevehicles (AAVS) are ex-
pected to be capable of structural self-assessmenand
repair. The researt results preseried in this pa-
per were obtained as part of the joint CSIRO-NASA
AAV project. At this stage, the project is concerned
primarily with the self-assessmén or self-monitoring,
functions, but it will progresstowards the incorpora-
tion of damage prognostic models enabling a predic-
tive damage mitigation decision-making process. The
initial goal of the presert AAV Concept Demonstra-
tor (Abbott et al., 2002 Abbott et al., 2003 is the de-
tection and characterisation of high velocity impacts
caused,for instance, by micro-meteoroidsin space.

In general, the self-monitoring functions can be di-
vided between those carried out by distributed sensors
and decertralised processingand communication on the
skin or within the structure, and those that could be
more e ectiv ely provided by autonomous robotic non-

Figure 1: A single square cell with 4 communication ports:
Concept Demonstrator view of a printed circuit board.

destructive evaluation (NDE) agerts deployed to moni-
tor damageor integrity of the vehicle structure. In this
paper, we consider the rst type of agerts embedded
in the skin of the AAV. In particular, we shall con-
sider a multi-cellular sensingand communication net-
work. Each cell in this network has the ability to
sensevia its 4 piezoelectric sensors,processthe inputs,
and communicate through its 4 communication ports
(Abbott et al., 2003, as shawvn in Figures 1 and 2.

A two-dimensional array of cells is modelled in
a biologically-inspired hybrid Concept Demonstrator,
some cells existing in dedicated hardware (a cell
per micro-processor) and some residing within inter-
connectedpersonalcomputers(a number of cellsper PC)
(Abbott et al., 2003. We also used a stand-alone Sim-
ulator capable of simulating somesimple environmental
e ects such as particle impacts of various energies.

The solution adopted for the problem of handling
distributed sensordata and making the self-monitoring



Figure 2: A single square cell with 4 communication ports:
AAV Simulator view.

system robust, is to distribute the processingas well,
so that most computation takes place near the data
source,and there is no single or small number of points
of failure. In other words, without certralised con-
trollers, agerts (cells) are expected to self-organiseand
survive on the basis of local, rather than global, in-
formation (no single agert has accessto information
about any others but its neighbours). This approact
usesthe idea of localisedalgorithms (Estrin et al., 1999
Macias and Durbed, 2002 Durbed and Macias, 2002
Prokopenko et al., 2004, in which simple local be-
haviours achieve a desired global objective, while com-
municating only with cells within an immediate neigh-
bourhood. Single cells may needto make fast and au-
tomatic responsesto sudden damage, while collections
of cells may solve more complex tasks, for example,
produce an impact boundary with desired characteris-
tics (Lovatt et al., 2003 Foremanet al., 2003 or form a
spanningtree connecting cellsthat detected non-critical
impacts (Wang et al., 2003 Prokopenko et al., 2004).

Typically, the desirable emergen behaviour on the
system level is not easily predictable from local agerts'
rulesand interactions. Our proposedapproac to design-
ing localised algorithms is basedon an iterativ e process
including the following steps: a) forward simulation lead-
ing to emergen behaviour for a classof localised algo-
rithms; b) quantitativ e measuremen of spatiotemporal
stability of the emergen patterns; and c¢) ewlutionary
modelling of the algorithms, with the metrics obtained
at step b) cortributing to the tness functions. This
paper investigatesthe step c).

The next sectionwill cover somebadkground on mea-

suresof emergen behaviour, followed by a description,
in section 3., of a localised algorithm producing impact
boundaries and emergen recovery membranes. Section
4. will then describe a genetic algorithm and our exper-
iments on ewlving the recovery membranesto t the
desired criteria.

2. Background

A very promising direction was investigated by Wright
et al. (Wright et al.,, 2000 who designed a measure
of emegene of swarming/ o cking behaviour in multi-
agert systems. The approach borrows from the analy-
sis of dynamical systemsand assumesa selection of a
set of local state variables (eg., 2-dimensional coordi-
nates of agerts/particles and their corresponding veloc-
ities). The proposed measure estimates the level of
self-organisationin the multi-agent o ck via approxima-
tion of the dynamical system's characteristic dimension
| i.e., by determining how well a swarm/ o ck canbede-
scribed asa single body. The characteristic dimensionis
approximated through the Shannonentropy of singular
value spectra sampled over time (Wright et al., 2000.
The proposedcalculation involves a number of approx-
imations and is computationally intensive, but impor-
tantly, it assaiates\a systems'ability to exhibit emer-
gent behaviour with sudden transitions in the mea-
sure, relative to smooth changesin system parameters"
(Wright et al., 2000.

There are other information-theoretic metrics that tar-
get complexity of a multi-agent system. For example, a
rule-spaceof 1-dimensional cellular automata was char-
acterised with the Shannon ertropy of rules' frequency
distribution (Wuensde, 1999. The input-entropy set-
tles to fairly low values for ordered dynamics, but uc-
tuates irregularly within a narrow high band for chaotic
dynamics. For the complex CA, the input-entropy gen-
erally settles onto a short attractor cycle, where order
and chaos may predominate at dierent times causing
the entropy to vary. A measureof the variability of the
input-entropy curve s its varianceor standard deviation,
calculated over time. Wuensde hasconvincingly demon-
strated that only complex dynamics exhibits high vari-
anceof input-entropy, leadingto automatic classi cation
of the rule-space.Importantly, the peakof input-entropy
variance points to a phasetransition aswell, indicating
the edgeof chaos (complexity).

We would like to point out, however, that both the

measureand the input-entropy of the CA rule-space
rely purely on local state variables that can be ass@i-
ated with ead particle/cell, and do not directly cap-
ture inter-agent connectionsand interactions. In other
words, the  measure estimates degreesof freedom in
the dynamical system, rather than complexity of spatial
inter-connections in a multi-agent network. Similarly,
the input-entropy of the CA rule-spacetracesdiversity of



rules usedover time and identi es temporally persistern
con gurations, rather than spatial connectivity among
neighboring cells. If oneneedsto capture emergenceand
stability of a speci ¢ spatial pattern (eg., a contin uously
connectedboundary, a maximally connectedsub-graph,
a desired geometric or topological shape, etc.), then an-
other type of measureis needed.

It is well-known that graph connectivity can be anal-
ysed in terms of the size of the largest connected sub-
graph (LCS) and its standard deviation obtained across
an ensenble of graphs, as suggestedby the random
graphs theory (Erdosand Renyi, 1961). In particular,
critical changesoccur in connectivity of a directed graph
as the number of edgesincreases| the sizeof the LCS
rapidly increasesaswell and IlIs most of the graph, while
the variance in the size of the LCS reachesa maximum
at somecritical point before decreasing.Thus, a metric
basedon LCS variance may capture spatial aspects of
desiredemergen patterns (connectivity), while a metric
basedon ertropy of local agert variables (rules, coordi-
nates, velocities, etc.) may capture temporal persistence
of emergen behaviour.

Importantly, the approad introduced in the work
done by (Wright et al., 2000 suggestsa feedba& using
the measurein evolvingthe desiredpattern: swarming
behaviour as opposedto fully coordinated \crystalline"
behaviour or totally uncoordinated dynamicsof indepen-
dent particles. A feedbak to ewolvable localised algo-
rithms, basedon a quartitativ e measureof global emer-
gert behaviour, is certral to our approach aswell. More-
over, the identi ed distinction betweenspatial and tem-
poral metrics allows us to implemert this feedbak sys-
tematically, focussingon those ewolvable aspectsthat are
important for a speci ¢ task (spatial connectivity and/or
temporal persistence,size of emergen structures, etc.).

3. Impact Boundaries

This sectionpreseris alocalisedalgorithm producing im-
pact boundaries in the presenceof connectivity disrup-
tions and cell failures resulting from impacts. Typically,
the damageon the AAV skin causedby a high energy
impact is most sewere at the point of impact (an epicen-
tre). It will be assumedthat not only the cells at the
epicertre are destroyed, but the communication capa-
bility of the neighbouring cells may be reduced| e.g.,
the communication damagemay propagate out with an
exponertial decey to a certain radius. In this case,the
damage can be characterised by a probability P; of an
error corrupting a messageit i, dependent on proximity
of the a ected communication port to the epicertre:

1 d
PI - E (1 ﬁ) ’
whered is the distance betweenthe involved communica-

tion port and the epicertre of the impact with the radius

Figure 3: A stable impact boundary: white cells are de-

stroyed, dark-grey cells form \sca olding”, black cells form
\frame". Boundary links are shown as white double-lines.

R, and isthe exponertial decay of the communication
loss. Obviously, multiple impacts result in overlapping
damagedregions, and the cumulativ e bit error probabil-
ity can be approximated as

1 X m dj

= 5 t )
2j=1 RJ

Pi

wherem is the number of impacts. The probability that
the whole messageortaining n bits is corrupted depends
on the employed error correction code. For example,
the (12; 8) Hamming error correction code (8 data and 4
parity ched bits) corrects a single bit error per 12 bits,
and leadsto the following estimation

P, _ 0 if P" r;
failure — 1 Pin if Pin> r:
wherer = ﬁ is the error correction rate!.

The impact boundaries are expected to enclosecriti-
cally damagedregionsand form contin uously connected
closed circuits (Lovatt et al., 2003. Moreover, impact
boundaries must be robust to communication malfunc-
tions caused by proximity to the impact | in other
words, in the presenceof unreliable communications be-
tween cells due to high probabilities Ps 4 ur e, and with-
out knowing the distancesbetweenead cell and the epi-
certre. Figure 3 illustrates a typical situation: the white
cells are destroyed, normal cells (background colour) do
not detect any damage, while cells shovn with white
double-linesself-organiseinto the impact boundary. Im-
pact boundaries are intended to ensurea reliable com-
munication pathway around the damaged region, and

1A computationally expensive Reed-Solomon error correction

code would give a much better error correction rate than % in the

best case of consecutive \burst" errors.



alsocreatean outline for subsequen self-repair, beingin-
spired by a biological analogy| the clotting of a wound
on mammalian skin. Not surprisingly, spatiotemporal
stability in impact boundariesis an important concern:
even at the periphery of a singleimpact region the prob-
ability P i wre may be fairly high. Moreover, multi-
ple impacts often intro duce someasymmetry within cell
neighbourhoods, so that a cell may be able to transmit
but not receiwe data or vice versa(Lovatt et al., 2003.

3.1 Ememgent Membranesand Recovery Mode

In this section, while describing the localised algorithm
producing impact boundaries, we shall highlight the
role of emergen recovery membanesthat separatethe
boundaries from inner impact-surrounding regions, in-
cluding (possibly recovering) cells that may communi-
cate unreliably. Weintend to shaw that a recosery mem-
braneis an emergen structure, and its emergencds pre-
cisely the reasonfor stabilisation of the impact bound-
ary. In doing sowe shall also underscorethe parameters
used to ewolve recovery membranes and stable impact
boundaries.

First of all, we considerthe following two communica-
tion behaviours potentially leading to emergenceof an
impact boundary, in the absenceof sensoryreadingsfrom
cells destroyed by impacts:

(i) At the start of every cycle, every cell sendsa Ping
messagdo ead of its neighbours.

(ii) If abooleanvariable EnableAcksis true, a cell sends
an Acknowledgmert reply when it receives a Ping
message.

The secondbehaviour is ewlvable, while the rst one
is pre-determined. Two binary circular arrays are used
to store the communication histories for ping messages
(pingArray) and adknowledgmerts (ackArray) for eadh
communication port. The size of these arrays is called
the communication history length.

Every cycle, after receiving communication messages,
ead cell updates the following parameters:

(1) For each comnmunication port, PingFailure will re-
sult if the percertage of lost Pings in the pingArray
is greater than PingFailThr eshold

(2) For each communication port, PingSuaesswill re-
sult if the perceniage of Pings received in the pingAr-
ray is greater than or equalto PingSuwessTheshold

(3) For each communication port, AckSucesswill re-
sult if the percertage of Acknowledgmerns received
in the AckArray is greater than or equalto AckSuc-
cessTheshold

The Failure and Suaess parameters are hysteretic:
they change values only when a su cien t communica-
tion history is accunulated. This lagging of an e ect

behind its cause provides a (temporary) resistanceto
changeand ensuresa degreeof stability in the treatment
of communication connectionsbetweenany two cells:

(4) A neighbour is consideredto be communicating
when EnableAcksiis false and PingSuaessis true, or
both EnableAcksis true and AckSueessis true.

(5) S@ olding state Sg will result if there are no com-
municating neighbours.

(6) Frame boundary state S; will result if PingSuc-
cessis true for at least one communication port, and
PingFailure is true for at least one communication
port?.

(7) Closal boundary state S; will result if the cell
state is S; , and there are at leasttwo communicating
neighbours.

In order for a cortinuous impact boundary to emerge,
the following two communication behaviours were con-
sidered:

(i) if the cell state is S¢, 1) determine a cell that
failed to comnmunicate; 2) determine two communi-
cating neighbour cells ; and , nearestto the cell

3; 3) map the directionsto , ; and ; to a di-
rection ; and 4) senda \Connect( ; )" messagego
both ; and , with atime to live parameter ;

(iv) upon receiving \Connect( ; )" messagefrom a
cell , if the cell state is not S, 1) switch to the
state S¢, 2) if > 0, follow the steps 2) and 3)
from (i) producing new direction °and 3) senda
\Connect( 1; 9" messageto neighbours ; and

2.

The time to live is an ewlvable parameter, and pre-
verts spurious links from persisting. In general, the de-
scribed policy achievesthe desiredrobustnessand corti-
nuity of self-organisingimpact boundariesfor a variety of
cell shapes (triangular and square) and communication
damageprobability distributions (Foremanet al., 2003.
One particular ewlvable behaviour is critical in achiev-
ing the desiredstability:

(v) If a boolean variable EnableShutdownis true, the
cell in the Sa olding state S will stop transmitting
messages.

This is neededin order to break asymmetry between
neighboring cells, where a cell is able to transmit data
but not receiw, or vice versa| it is better in such cases

2This condition is similar to the condition of having at least
one communicating neighbour and at least one mis-communicating
neighbour, but doesnot assume Acknowledgement messagesat all.

SWhen cell determines its own neighbour cells nearest to some
other neighbour cell , it choosesthe cells 1 and 2 on opposite
sides (clockwise and counter-clo ckwise), relativ e to



not to communicate at all. This behaviour is e ectivein
achieving stable impact boundaries. Howewer, the cells
that stopped transmitting messagesnay needto resume
communications under certain conditions| for example,
when a repair action is initiated, and their neighbours
are again ready to receive communications (i.e., when
the causeof asymmetry is eliminated). The conditions
for resumption of communications have to be preciseso
that they are not reacted upon prematurely, interfering
with boundary formation. A variant of these recovery
conditions is given below:

(vi) Recovery state S, will result if all ports have ping-
Suaessfor a number of consecutive cycles,wherethis
number is set by RecoveryThreshold

(vii) Recorvery state S; will result if all ports have ping-
Failure for a number of consecutiwe cycles,wherethis
number is set by RecoveryThreshold

(viii) A cell stays in the Recovery state S, and may
send communication messageduring the next Re-
coverylnertia cycles.

The behaviour (vii) enablestotally isolated cellsto bein
a ready recovery state aswell | a feature that, under-
standably, may be neededwhen a repair is in progress
and cells are being transported acrossa panel. It is pre-
ciselythe combination of the \shutdown" and \recovery"
conditions that makesthe problem of designing (evolv-
ing) stable impact boundaries particularly dicult. On
one hand, \shutdown" condition (v) disables\asymmet-
ric" messagesmaking the task of boundary formation
easier. On the other hand, conditions (vi)-(viii) may
enable\asymmetric" messagespotentially destabilising
the boundary.

The solution to this problem is provided by emer-
gert spatiotemporal structures | recovery membranes
| that separatethe boundaries from recovering cells.
A recovery menmbrane always forms on the inside of
the closed boundary, and on the outside of the recov-
ering area. Interestingly, unlike sca olding and frame
boundary, the membrane is not a designated state into
which a cell can switch. Membrane cells shut down
their communications, following behaviour (v) like other
sca olding cells, but do not resumecommunications be-
causebehaviours (vi)|(vii)  are not applicable, asthere
are some (but not all) mis-commnunicating neighbours.
Without a membrane, the cells on the frame boundary
would be confusedby intermittent messagedrom scaf-
folding cells attempting recovery. Figure 4 illustrates a
chedkered-pattern recovery membrane shonvn with dark-
grey colour, while the recovering cells are showvn in
darker shadeof white. It is quite obvious that the mem-
brane cells separatethe recovering sca olding cells from
the frame boundary.

Figure 4: Five white cells at the epicertre are destroyed. A
recovery membrane shown in dark-grey \absorbs" sca olding
cells that attempt recovery, shown in darker shade of white,
and separatesthem from the frame, shown in black.

4. Evolving Recovery Mem branes

In this section, we describe a Genetic Algorithm (GA)
aimed at ewolving the parametersusedin impact bound-
ary formation. In particular, we examine the inter-
relationships between communication \shutdown" and
\recovery" conditions that give rise to recovery mem-
branesneededfor stable impact boundaries. Someof the
ewlving parameters designate conditionalised branches
of the impact boundary algorithm, and somerepresen
various thresholds, so the seard spaceis signi cantly
large. It is well-known that a genetic algorithm, as a
problem-solvingtool basedon biological ewolution, works
on improving a solution via a seart through a processof
selection, reconmbination (crosswer) and mutation, and
is particularly usefulwhenthe seart spacehasmany lo-
cal optima or istoo large to usecorvertional techniques.

4.1 Encoding

We followed a traditional GA encaing: binary strings
encading the chromosomeas a structure cortaining the
collection of parameters (genes)and represerting a be-
havioural trait of the individual. Our chromosomecon-
tains the following 42 bits:

History, (5 bits) | number of cycles for which a
cell remenbersthe received Pings and Acknowledge-
merts.

PingFailThreshold(7 bits) | a percertage represetting
the number of Ping messagesost in the last History
cyclesincluding the current cycle.

PingSuaessThieshold (7 bits) | a percertage repre-
serting the number of Ping messageseceiwed in the
last History cyclesincluding the current cycle.



AckSueessThreshold(7 bits) | apercenagerepresert-
ing the number of Acknowledgemerts messagese-
ceived in the last History cyclesincluding the current
cycle.

RecoveryThreshold (5 bits) | number of cyclesthe
recovery condition must hold for communication re-
covery to start.

Recoverylnertia (6 bits) | number of cyclesin which
a cell continuesto communicate with its neighbours
while recovering.

Time to live, (3 bits) | number of times a Connect
messagsés sernt before being discarded.

EnableShutdown(1 bit) | a Boolean variable indicat-
ing whether a cell shutdown functionality is enabled.

EnableAcks (1 bit) | a Boolean variable indicating
whether a cell has the ability to send and receive
Acknowledgemelts messages.

4.2 Fitness/Objective Function

The ewlution of recovery menbranes is based on
spatiotemporal metrics incorporated within a tness
(objective) function. The analysis preseried by
(Foreman et al., 2003 usedtwo metrics to characterise
stability of emergen impact boundaries: spatial and
temporal.

The spatial metric is basedon the variancein the size
of the connectedboundary-fragmert (CBF). A CBF is
simply a set F of cells in the closedstate S, suc that
every cellin F is connectedwith at leastoneother cell in
F, and there exists no cell outside F, which is connected
to at leastonecellin F (an analogueof a maximally con-
nected sub graph or a graph componert). We calculate
the maximum sizeH gy (t) of CBF's in self-organisingim-
pact boundariesat ead cycle. Its variance §p over time
is then usedasa spatial metric within the objective func-
tion. This metric, as mentioned before, is inspired by
random graphstheory and is intended to capture spatial
connectivity in impact boundaries. A contin uous bound-
ary may, however, changeits shape over time, without
breaking into fragmens, while keepingthe size of CBF
almost constart. Therefore,atemporal metric that mea-
suresthe diversity of cell transitions (analogouslyto cel-
lular automata input-entropy or the measureusedto
characterise o cking behaviour) may be complemenary.

In order to analysetemporal persistene, we consider
state changesin ead cell at ewery time step. Given 6
symmetric boundary links possiblein ead square cell
(\left-righ t", \top-b ottom", \left-top", etc.), there are
2% possibleboundary states (including \no-b oundary"),
and m = 2'2 transitions. The entropy Hiemp (t) of a
particular frequencydistribution S;(t), wheret is a time
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Figure 5: A chaotic boundary with Hs, 16 and zero-length

communication . A membrane does not form at all. Both
% and 2, arelow-to-medium.
step, and i is a cell transition index: 1 i m, canbe

calculated as follows:
XSt St
Htemp (t) = % |Og% :

i=1

wheren is the total number of cells,and S; (t) is the num-
ber of times the transition i wasusedat time t acrossall
cells. Again, the variance tzemp of the entropy Hemp (1)
over time is usedas a temporal metric within the objec-
tive function.

Our task is complicated by the fact that emergen
structures are characterised by a phase transition de-
tectable by either 2, or &, . rather than a particular
value range. Therefore, simply rewarding low valuesfor
these entropy-based metrics would be insucient. In
particular, it has been obsened (Foremanet al., 2003
that both metrics are low-to-medium for algorithms with
zero-length communication  (tropistic algorithms and
chaotic regimes| Figure 5), increasedramatically for

in the range 1 0, where ¢ is a critical value
at and below which complex unstable behaviours occur
(Figure 6), and undergo a phasetransition to very low
valueswhen >  (hysteretic algorithms and ordered
regimes).

The critical value ¢ is, of course, dependert on all
other parameters used by the algorithm. Nevertheless,
the chaotic regimes, which are more stable simply due
to a small number of connections,can often be identi ed
by a low averageHs, of the maximum sizesHg,(t) of
CBF's in impact boundaries, ruling out at least zero-
length histories. In particular, impact boundaries with
the averageHs, 16 can be safely ruled out | the
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Figure 6: An unstable boundary with
value. The membrane is fragmentary. Both
are closeto their peaks: the phasetransition.

resulting chaotic patterns, illustrated in Figure 5, are of
no interest.

On the other hand, a preference among ordered
regimestowards shorter histories is another useful iden-
tier of a phase transition and the critical value .
Besides, a shorter communication history  enablesa
quicker response, as do lower valuesof and . Thus,
our rst experiment used minimisation of the following
objective function:

M if Hyp 16

40 3,+ + + + Hg if Hgp > 16

fsp( )=

where M is the maximal integer value provided by the
compiler. The coecient re ects the relative impor-
tance of the length of impact boundariesin the objective
function | sometimes,it may be asimportant to obtain
smallest possibleimpact perimeter asit is to maintain a
shortest possiblecommunication history. We alternated
between ; = 0:25and , = 2:.0.

The secondexperiment focussedon temporal metric

tzemp embeddedin the objective function femp () con-
structed analogouslyto the function fg,( ):

8
< M

flemp ()= . 100 fmp + + =+ +
; v Hy

if Hep 16
if Hep > 16:

Finally, our ultimate objective function is de ned asfol-
lows:

8
<

f()= 30 5+10 2,)+

+ + + + Hgp f

M it Hyp 16
1
2

Each experimert involves an impact at a prede ned
cell, and lasts 500 cycles;the rst 30 cyclesare excluded
from the seriesHgp(t) and Hemp (t) in order not to pe-
nalise longer history lengths We repeat the exper-
iment 3 times for ewvery chromosome and average the
objective (tness) valuesobtained over theseruns.

4.3 Seletion

We have chosena geneation gap replacemen strategy
hoping to use better seard capabilities o ered by the
generational replacemen and faster corvergencetypi-
cally provided by the steady state selection. Someof this
faster convergence, however, may be explained by the
stochastic nature of the selectionoperator: the rate of ge-
netic drift in steady state selectionis twice that of gener-
ational selection(Rogersand Prugel-Bennett, 1999. In
our experimernts, we set the generation gap parameter
G = 0:2. In other words, the ertire old population
(40 chromosomes)is sorted accordingto tness, and we
choosethe best20%for direct replication in the next gen-
eration, employing an elitist selection mechanism. The
selectionphaseand recombination (crosswer) phasecan
be merged (Thierens and Goldberg, 1994. We follow a
similar approac but still explicitly keep the selection
phasereplicating the elitist o spring. The rest of selec-
tion functionality is moved into the crosswer.

4.4 Crossoverand Mutation

We used a variation of the n-point crosswer, where
the probability of having n points in the crosswer de-
pendson the tness of the chromosome. We choosethis
sincethere are bene ts of having a low and high n-point
crosswer, enabling a better exploration in the seard
space. Our variation involvesthree di erent crosswers,
ead having an equal probability of contributing to the
generation of new chromosomes. In other words, after
the elite takes 20% of the new population, for eadt re-
maining place we randomly perform a crosswer chosen
among the following three:

Elitist driven: parent 1 is randomly chosenfrom the
bestperforming 20%o0f the old population and parert
2 is randomly chosenfrom the ertire old population,
followed by a low 1- to 2-point crosswer (the number
of points is determined randomly). This low-point
crosswer is usedhere sinceit makessenseto disturb
an elitist-driv en solution as little as possible.

Mid-range parent 1 is randomly chosenfrom the next
20%- 50% of the old population and parent 2 is ran-
domly chosenfrom the entire old population, followed
by a medium 1- to 4-point point crosswer (the num-
ber of points is determined randomly as well). This
medium-point crosswer is more applicable when it
makes senseto disturb a mediocre solution.



Figure 7: A large chedkered-pattern membrane, with short
hysteresis, within a morphing but closed and continuous
boundary ( = 0:25). Both % and 2, are low.

Remainder. parert 1is randomly chosenfrom the worst
performing 50% of the population and parent 2 is
randomly chosenfrom the ertire old population, fol-
lowed by a high 1- to 7-point crosswer, potentially
disrupting an under-t solution alot in orderto enter
a new seard region.

A feature of this multi-p oint crosswer is that the rst

geneis always inherited from parent 1. We also ensure
that o spring generatedfrom the crosswer is unique. We
use a slightly higher than typical mutation rate: ead
bit in the chromosomehas a 0:04 probability of being
ipp ed. We also ensure that the mutation results in
a unique chromosomeby repeating mutation if the pro-
duced chromosomealready exists in the new population.
Mutation is not performed on the chromosomegenerated
via elitist selection.

5. Exp erimen tal Results

Our rst experiment minimising the objective function
fsp(0:25) was mainly concernedwith spatially connected
and stable impact boundaries, and the form taken by
corresponding recovery menbranes. The length of the
boundary was of lesserimportance. Not surprisingly,
the ewlved solution achieved long robust and cortin u-
ousimpact boundarieswith Hs, = 40 (Figure 7), around
large impact-surrounding regions, while requiring fairly
short hysteresis: = 2 and = 5. The stabilisation
of an impact boundary around a large region occurs at
the periphery of the communication damage,where the
probability Ps 4 yr e falls to 0 due to the error correction
code, and the processhas a cascadingnature, where the
boundary expandsto everntually cover all the impact-

Figure 8: A small membrane, with long hysteresis, within a
regular octagonal boundary ( = 2:0). Both 3, and &mp
are very low.

surrounding region. Interestingly, the ewolved cortinu-
ous boundariesmay changetheir shape and only rarely
stabilise as a regular octagon, while keepingtheir length
Hsp = 40 constart. The emergen recovery membrane
ewlved to separateboundary from the recovering cells.
It hasa chedered pattern that can be explained by the
opposing nature of the conditions (vi) and (vii), and the
short hysteresis enabling oscillations between recovery
and sca olding states.

On the other hand, minimisation of fs,(2:0) resulted
in more compactimpact-surrounding regions(Hgsp = 32,
Figure 8) and thinner menbranes, at the expense of
longer hysteresis: = 6 and = 4. Theseboundaries
morph aswell, but generally keepthe shape of a regular
octagon. Interestingly, the secondexperiment produced
a typical speciation, where the longer hysteresis solu-
tions took only one niche, while shorter hysteresis = 2
and = 4 solutions co-ewlved into a separate niche,
both niches ewlving compact regions with boundaries
Hsp = 32. This supports our conjecture that the em-
ployed generational gap selectionwith G = 0:2 counter-
acts the geneticdrift to a reasonabledegree.

Both solutions favoured = 1 asexpected for square
cells (while triangular cells require at least = 2 to
achieve cortinuity). Also, the ewolved cellspreferto send
Acknowledgemens (EnableAcks = 1) and stop trans-
mitting in scaolding state (EnableShutdown = 1).
Without the latter feature membraneswould not emerge,
and the recovering cells would disrupt the boundaries.

The secondpair of experiments focussedon ewlving
temporally stable boundaries, minimising femp (0:25)
andf emp (2:0). Theseexperiments producedresults very
similar to the onesobtained by minimising the spatial
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Figure 9: The functions fsp (0:25), femp (0:25) and f (0:25).

metric. In particular, two typesof boundaries ewolved,

one with a shorter hysteresis( = 2 and = 8) and
longer boundariesHg, = 40, and the other with alonger
hysteresis( = 6 and = 4) and shorter boundaries

Hgp = 32. Both solutions involve membranes, the main
di erence beingthat eventhe shorter hysteresissolutions
with longer boundariestend to reach and retain the reg-
ular octagon shape. Howewer, sometimesthe boundary
fragments. Theseoutcomesare expectedfor an objective
function rewarding temporal stability.

The nal pair of experiments combined the spatial and
temporal metric, minimising f (0:25) and f (2:0). Again,
both types: (Hsp = 40, = 2, = 8)and (Hg = 32,

= 6, = 8) wereproduced. As expected, the ewlved
membranes and boundaries were more stable, and had
a regular octagon shape in both cases,mostly without
morphing or fragmenting.

As mertioned above, the case = 0:25 results in
longer boundaries that are capable of morphing with-
out breaking into fragments. The objective functions
f5p(0:25), femp (0:25) and f (0:25) for the most t indi-
vidual in eat generation are plotted in Figure 9. All
plots exclude the initial period (20 generations) of the
rapid decreasetypical for GA-based exploration of the
seart-space. The function f¢,(0:25) corvergeswell but
doesnot explorethe seard-spaceconsiderably This is so
becausdt usesthe spatial metric and, therefore, rewards
the boundary's cortin uity, ignoring morphing instabilit y
| which is\allowed" in this case.On the cortrary, the
function f emp (0:25) attempts to minimise morphing in-
stability and hasto explore a large part of the space.

The objective functions f 55 (2:0), ftemp (2:0) and f (2:0)
are plotted in Figure 10. The case = 2.0 results in
shorter boundariesthat cannot morph without breaking
into fragmerts, soany instabilit y leadsto fragmenrtation.
Consequetly, the function femp (2:0) shows the con-
vergencewithin a narrower band | it usesthe tempo-
ral metric and rewards persistence,ignoring occasional
fragmentations. Its counterpart, the function f¢,(2:0),
speci cally puts selectionpressureon cortin uity, leading
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Figure 10: The functions fsp (2:0), femp (2:0) and f (2:0).

to a wider exploration and poorer convergence.

Importantly, the functions f (0:25) and f (2:0), using
spatiotemporal metrics, provided a good compromisein
both cases.The experiments con rmed that the choiceof
an objective function dependson the main task: when
the target is not only corntinuity of impact boundaries
but also their shape, then the spatiotemporal metric is
more suitable. On the other hand, if morphing is accept-
able, then a spatial metric capturing connectivity rather
than shape is sucient. Similarly, a temporal metric
may be better suited for a general shape designif spo-
radic fragmentations are tolerable.

6. Conclusion

In this paper we suggestedand veried a methodol-
ogy underlying design of localised algorithms for com-
plex multi-agent systems,exempli ed by self-monitoring
aerospace vehicles. We started by briey describ-
ing a multi-agent algorithm leading to emergenceof
impact boundaries and recovery membranes, followed
by quantitativ e measuremen of spatiotemporal stabil-
ity of the emergen patterns. The graph-theoretic
and information-theoretic metrics, capable of identify-
ing phasetransitions, cortributed to tness functions for
ewlutionary modelling of boundaries and membranes.
The produced results are promising and demonstrate
the possibility for a multi-ob jective design of localised
algorithms. In particular, the desired responsetime as
well assize(and potentially , shape) of impact boundaries
and membranesmay be speci ed in advance,leaving the
preciselogic and parameterisation of the localised algo-
rithms to selection pressures. We believe that the pro-
posed methodology is well suited to the design at the
edgeof chaos wherethe designobjective (e.g., a speci ¢
shape) may be unstable, while other parameters(e.g. the
responsetime) may be optimal. The preseried methods
should increasethe reliability of the design of complex
multi-agent systems, accourting for emergen patterns
that are not easily predictable by human designers.



Ac knowledgemen ts This work was carried under
CSIRO cortract to NASA. It is a pleasureto record
our appreciation to Dr Ed Generazio (NASA Langley
Researti Center) for his encouragemeh and support.
The authors are grateful to other members of the AAV
project for many open and motivating discussionsespe-
cially Tony Farmer, Mark Foreman, Mark Hedley, Geo
James,Mark Johnson, Chris Lewis, Geo Poulton, Don
Price, Andrew Scott, Sarath Seneviratne,and Philip Va-
lencia. The authors are also grateful to all members of
GREM “? (a collaborative CSIRO laboratory on Global
ResponseEngineeringin Multi-Agent Networks) and the
discussiongroup on \Entropy and self-organisation in
multi-agent systems"in CSIRO.

References

Abbott, D., Batten, A., Carpenter, D., Dunlop, J., Ed-
wards, G., Farmer, A., Ganey, B., Hedley M.,
Hosdke, N., Isaacs, P., Johnson, M., Lewis, C.,
Murdoch, A., Poulton, G., Price, D., Prokopenko,
M., Rees,D., Scott, A., Seneviratne, S., Valencia,
P., Wang, P., and Whitnall, D. (2003). Develop-

ment and evaluation of sensorconceptsfor ageless

aerospacevehicles(4): Phasel| implementation
of the conceptdemonstrator. In CSIRO CTIP Re-
port No TIPP 1898 Septenber 2003.

Abbott, D., Doyle, B., Dunlop, J., Farmer, A., Hedley,
M., Herrmann, J., James, G., Johnson, M., Joshi,
B., Poulton, G., Price, D., Prokopenko, M., Reda,
T., Rees,D., Scott, A., Valencia, P., Ward, D., and
Winter, J. (2002). Developmen and evaluation of
sensorconceptsfor agelessaerospacerehicles.devel-
opmert of conceptsfor an intelligent sensingsystem.
In NASA technical reprt NASA/CR-2002-211773.
Langley Researth Center, Hampton, Virginia.

Durbed, L. and Macias, N. (2002). Defect-tolerart,
ne-grained parallel testing of a cell matrix. In
Sdewel, J., James-Rxby, P., Scmit, H., and
McHenry, J., (Eds.), Proceedings of SPIE ITCom
2002 Series, Vol. 4867.

Erdos, P. and Renyi, A. (1961). On the strength of
connectednes®f random graphs. Acta Mathematica
Scientia Hungary, 12:261{267.

Estrin, D., Govindan, R., Heidemann, J., and Kumar,
S. (1999). Next certury challenges: Scalable coor-
dination in sensornetworks. In Proceedings of the
Fifth Annual ACM/IEEE International Conferenee

on Mobile Computing and Networks, pages263{270.

ACM Press.

Foreman, M., Prokopenko, M., and Wang, P. (2003).
Phasetransitions in self-organisingsensometworks.
In Banzhaf, W., Christaller, T., Dittric h, P., Kim,

J., and Ziegler, J., (Eds.), Advanesin Arti cial Life
- Proceadings of the 7th European Conference on Ar-
ticial Life (ECAL), volume 2801 of Lecture Notes
in Arti cial Intelligence. Springer Verlag.

Lovatt, H., Poulton, G., Price, D., Prokopenko, M.,
Valencia, P., and Wang, P. (2003). Self-organising
impact boundariesin agelessaerospacevehicles. In
Rosensbein, J., Sandholm, T., Wooldridge, M., and
Yokoo, M., (Eds.), Proceadings of the 2nd Interna-
tional Joint Conference on AutonomousAgentsand
Multi-A gent Systems pages249{256. ACM Press.

Macias, N. and Durbed, L. (2002). Self-asserhling
circuits with autonomousfault handling. In Stoica,
A., Lohn, J., Katz, R., Keymeulen, D., and Zebu-
lum, R., (Eds.), Proceedings of NASA/DoD Confer-
ence on EvolvableHardware. IEEE Computer Soci-
ety Press.

Prokopenko, M., Wang, P., Foreman, M., Valencia,
P., Price, D., and Poulton, G. (2004). On connec-
tivit y of recon gurable impact networks in ageless
aerospacevehicles. Journal of Rolotics and Au-
tonomous Systems Special Issue:in press.

Rogers,A. and Prugel-Bennett, A. (1999). Genetic drift
in geneticalgorithm selectionschemes.IEEE Trans-
actions on Evolutionary Computation, 3(4):298{
303.

Thierens, D. and Goldberg, D. (1994). Elitist recomnbi-
nation: an integrated selection reconbination ga.
In Michalewicz, Z., Schaer, J., Schwefel, H.-P.,
Fogel, D., and H., K., (Eds.), Proceadings of the
First IEEE Conferene on Evolutionary Computa-
tion, pages508{512. IEEE Press.

Wang, P., Valencia, P., Prokopenko, M., Price, D.,
and Poulton, G. (2003). Self-recon gurable sen-
sor networks in ageless aerospace vehicles. In
Nunes, U., de Almeida, A., Bejczy, A., Kosuge,
K., and Machado, J., (Eds.), IEEE Proceedings of
the Eleventh International Conference on Advancd
Rolotics, ICAR 2003 pages1098{1103. Coimbra,
Portugal.

Wright, W., Smith, R., Danek, M., and Greernway, P.
(2000). A measure of emergencein an adapting,
multi-agent context. In Meyer, J., Berthoz, A., Flo-
reano,D., Roitblat, H., and Wilson, S., (Eds.), Pro-
ceedings of the Sixth International Conference on
the Simulation of Adaptive Behaviour, SAB 2000,
pages20{27. ISAB Press.

Wuensde, A. (1999). Classifying cellular automata au-
tomatically: Finding gliders, Itering, and relating
space-timepatterns, attractor basins,and the z pa-
rameter. Complexity, 4(3):47{66.



