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Abstract

In this paper we proposed and veri�ed a
methodology underlying the designof localisedal-
gorithms for complex multi-agent systems,exem-
pli�ed by self-monitoring aerospacevehicles. In
particular, we consideredthe emergenceof self-
organising impact boundariesand recovery mem-
branes, separating damaged and/or potentially
recovering regions from less a�ected agents. In
order to identify phase transitions in system's
dynamics, we investigated graph-theoretic and
information-theoretic metrics, and incorporated
them within �tness functions for a genetic algo-
rithm. The GA involved a generation gap strat-
egy and targeted a responsetime as well as spa-
tial connectivity, temporal persistenceand sizeof
emergent boundaries and membranes. A variety
of stable spatiotemporal patterns were produced
under selection pressure,highlighting the poten-
tial for the designat the edgeof chaos.

1. In tro duction

Robust or \ageless" aerospacevehicles (AAVs) are ex-
pected to be capable of structural self-assessment and
repair. The research results presented in this pa-
per were obtained as part of the joint CSIRO-NASA
AAV project. At this stage, the project is concerned
primarily with the self-assessment, or self-monitoring,
functions, but it will progress towards the incorpora-
tion of damage prognostic models enabling a predic-
tiv e damage mitigation decision-making process. The
initial goal of the present AAV Concept Demonstra-
tor (Abb ott et al., 2002, Abbott et al., 2003) is the de-
tection and characterisation of high velocity impacts
caused,for instance, by micro-meteoroids in space.

In general, the self-monitoring functions can be di-
vided between those carried out by distributed sensors
and decentralised processingand communication on the
skin or within the structure, and those that could be
more e�ectiv ely provided by autonomous robotic non-

Figure 1: A single square cell with 4 communication ports:
Concept Demonstrator view of a prin ted circuit board.

destructive evaluation (NDE) agents deployed to moni-
tor damageor integrit y of the vehicle structure. In this
paper, we consider the �rst type of agents embedded
in the skin of the AAV. In particular, we shall con-
sider a multi-cellular sensing and communication net-
work. Each cell in this network has the abilit y to
sensevia its 4 piezoelectric sensors,processthe inputs,
and communicate through its 4 communication ports
(Abb ott et al., 2003), as shown in Figures 1 and 2.

A two-dimensional array of cells is modelled in
a biologically-inspired hybrid Concept Demonstrator,
some cells existing in dedicated hardware (a cell
per micro-processor) and some residing within inter-
connectedpersonalcomputers(a number of cellsper PC)
(Abb ott et al., 2003). We also used a stand-alone Sim-
ulator capableof simulating somesimple environmental
e�ects such as particle impacts of various energies.

The solution adopted for the problem of handling
distributed sensordata and making the self-monitoring



Figure 2: A single square cell with 4 communication ports:
AAV Simulator view.

system robust, is to distribute the processingas well,
so that most computation takes place near the data
source,and there is no single or small number of points
of failure. In other words, without centralised con-
trollers, agents (cells) are expected to self-organiseand
survive on the basis of local, rather than global, in-
formation (no single agent has accessto information
about any others but its neighbours). This approach
usesthe idea of localisedalgorithms (Estrin et al., 1999,
Macias and Durbeck, 2002, Durbeck and Macias, 2002,
Prokopenko et al., 2004), in which simple local be-
haviours achieve a desired global objective, while com-
municating only with cells within an immediate neigh-
bourhood. Single cells may need to make fast and au-
tomatic responsesto sudden damage, while collections
of cells may solve more complex tasks, for example,
produce an impact boundary with desired characteris-
tics (Lovatt et al., 2003, Foreman et al., 2003) or form a
spanning tree connectingcells that detected non-critical
impacts (Wang et al., 2003, Prokopenko et al., 2004).

Typically, the desirable emergent behaviour on the
system level is not easily predictable from local agents'
rulesand interactions. Our proposedapproach to design-
ing localisedalgorithms is basedon an iterativ e process
including the following steps: a) forward simulation lead-
ing to emergent behaviour for a classof localised algo-
rithms; b) quantitativ e measurement of spatiotemporal
stabilit y of the emergent patterns; and c) evolutionary
modelling of the algorithms, with the metrics obtained
at step b) contributing to the �tness functions. This
paper investigatesthe step c).

The next section will cover somebackground on mea-

suresof emergent behaviour, followed by a description,
in section 3., of a localised algorithm producing impact
boundaries and emergent recovery membranes. Section
4. will then describe a genetic algorithm and our exper-
iments on evolving the recovery membranes to �t the
desiredcriteria.

2. Background

A very promising direction was investigated by Wright
et al. (Wright et al., 2000) who designed a measure
of emergence of swarming/o cking behaviour in multi-
agent systems. The approach borrows from the analy-
sis of dynamical systems and assumesa selection of a
set of local state variables (eg., 2-dimensional coordi-
nates of agents/particles and their corresponding veloc-
ities). The proposed measure
 estimates the level of
self-organisationin the multi-agent o ck via approxima-
tion of the dynamical system'scharacteristic dimension
| i.e., by determining how well a swarm/o ck canbede-
scribed asa singlebody. The characteristic dimension is
approximated through the Shannonentropy of singular
value spectra sampled over time (Wright et al., 2000).
The proposedcalculation involves a number of approx-
imations and is computationally intensive, but impor-
tantly , it associates \a systems' abilit y to exhibit emer-
gent behaviour with sudden transitions in the 
 mea-
sure, relative to smooth changesin system parameters"
(Wright et al., 2000).

There areother information-theoretic metrics that tar-
get complexity of a multi-agent system. For example, a
rule-spaceof 1-dimensionalcellular automata was char-
acterised with the Shannon entropy of rules' frequency
distribution (Wuensche, 1999). The input-entropy set-
tles to fairly low values for ordered dynamics, but uc-
tuates irregularly within a narrow high band for chaotic
dynamics. For the complex CA, the input-entropy gen-
erally settles onto a short attractor cycle, where order
and chaos may predominate at di�eren t times causing
the entropy to vary. A measureof the variabilit y of the
input-entropy curve is its varianceor standard deviation,
calculatedover time. Wuenschehasconvincingly demon-
strated that only complex dynamics exhibits high vari-
anceof input-entropy, leading to automatic classi�cation
of the rule-space.Importantly , the peakof input-entropy
variance points to a phasetransition as well, indicating
the edgeof chaos(complexity).

We would like to point out, however, that both the

 measureand the input-entropy of the CA rule-space
rely purely on local state variables that can be associ-
ated with each particle/cell, and do not directly cap-
ture inter-agent connectionsand interactions. In other
words, the 
 measureestimates degreesof freedom in
the dynamical system, rather than complexity of spatial
inter-connections in a multi-agent network. Similarly,
the input-entropy of the CA rule-spacetracesdiversity of



rules usedover time and identi�es temporally persistent
con�gurations, rather than spatial connectivity among
neighboring cells. If oneneedsto capture emergenceand
stabilit y of a speci�c spatial pattern (eg., a continuously
connectedboundary, a maximally connectedsub-graph,
a desiredgeometric or topological shape, etc.), then an-
other type of measureis needed.

It is well-known that graph connectivity can be anal-
ysed in terms of the size of the largest connectedsub-
graph (LCS) and its standard deviation obtained across
an ensemble of graphs, as suggestedby the random
graphs theory (Erd•os and Renyi, 1961). In particular,
critical changesoccur in connectivity of a directed graph
as the number of edgesincreases| the sizeof the LCS
rapidly increasesaswell and �lls most of the graph, while
the variance in the sizeof the LCS reachesa maximum
at somecritical point before decreasing.Thus, a metric
based on LCS variance may capture spatial aspects of
desiredemergent patterns (connectivity), while a metric
basedon entropy of local agent variables (rules, coordi-
nates, velocities, etc.) may capture temporal persistence
of emergent behaviour.

Importantly , the approach intro duced in the work
done by (Wright et al., 2000) suggestsa feedback using
the 
 measurein evolvingthe desiredpattern: swarming
behaviour as opposedto fully coordinated \crystalline"
behaviour or totally uncoordinated dynamicsof indepen-
dent particles. A feedback to evolvable localised algo-
rithms, basedon a quantitativ e measureof global emer-
gent behaviour, is central to our approach aswell. More-
over, the identi�ed distinction betweenspatial and tem-
poral metrics allows us to implement this feedback sys-
tematically, focussingon thoseevolvableaspectsthat are
important for a speci�c task (spatial connectivity and/or
temporal persistence,sizeof emergent structures, etc.).

3. Impact Boundaries

This sectionpresents a localisedalgorithm producing im-
pact boundaries in the presenceof connectivity disrup-
tions and cell failures resulting from impacts. Typically,
the damageon the AAV skin causedby a high energy
impact is most severe at the point of impact (an epicen-
tre). It will be assumedthat not only the cells at the
epicentre are destroyed, but the communication capa-
bilit y of the neighbouring cells may be reduced | e.g.,
the communication damagemay propagate out with an
exponential decay to a certain radius. In this case,the
damagecan be characterised by a probabilit y Pi of an
error corrupting a messagebit i , dependent on proximit y
of the a�ected communication port to the epicentre:

Pi =
1
2

(1 �
d
R

) � ;

whered is the distancebetweenthe involvedcommunica-
tion port and the epicentre of the impact with the radius

Figure 3: A stable impact boundary: white cells are de-
stroyed, dark-grey cells form \sca�olding", black cells form
\frame". Boundary links are shown as white double-lines.

R, and � is the exponential decay of the communication
loss. Obviously, multiple impacts result in overlapping
damagedregions,and the cumulativ e bit error probabil-
it y can be approximated as

Pi =
1
2

j = mX

j =1

(1 �
dj

Rj
) � ;

wherem is the number of impacts. The probabilit y that
the wholemessagecontaining n bits is corrupted depends
on the employed error correction code. For example,
the (12; 8) Hamming error correction code (8 data and 4
parit y check bits) corrects a single bit error per 12 bits,
and leadsto the following estimation

Pf ail ur e =
�

0 if Pn
i � r ;

1 � Pn
i if Pn

i > r ;

where r = 1
12 is the error correction rate1.

The impact boundaries are expected to enclosecriti-
cally damagedregionsand form continuously connected
closed circuits (Lovatt et al., 2003). Moreover, impact
boundaries must be robust to communication malfunc-
tions caused by proximit y to the impact | in other
words, in the presenceof unreliable communications be-
tweencells due to high probabilities Pf ail ur e, and with-
out knowing the distancesbetweeneach cell and the epi-
centre. Figure 3 illustrates a typical situation: the white
cells are destroyed, normal cells (background colour) do
not detect any damage, while cells shown with white
double-linesself-organiseinto the impact boundary. Im-
pact boundaries are intended to ensurea reliable com-
munication pathway around the damaged region, and

1A computationally expensive Reed-Solomon error correction
code would give a much better error correction rate than 1

12 in the
best caseof consecutive \burst" errors.



alsocreatean outline for subsequent self-repair,being in-
spired by a biological analogy | the clotting of a wound
on mammalian skin. Not surprisingly, spatiotemporal
stabilit y in impact boundaries is an important concern:
even at the periphery of a single impact region the prob-
abilit y Pf ail ur e may be fairly high. Moreover, multi-
ple impacts often intro duce someasymmetry within cell
neighbourhoods, so that a cell may be able to transmit
but not receive data or vice versa(Lovatt et al., 2003).

3.1 Emergent Membranesand Recovery Mode

In this section, while describing the localised algorithm
producing impact boundaries, we shall highlight the
role of emergent recovery membranes that separate the
boundaries from inner impact-surrounding regions, in-
cluding (possibly recovering) cells that may communi-
cate unreliably. We intend to show that a recovery mem-
brane is an emergent structure, and its emergenceis pre-
cisely the reasonfor stabilisation of the impact bound-
ary. In doing so we shall alsounderscorethe parameters
used to evolve recovery membranes and stable impact
boundaries.

First of all, we considerthe following two communica-
tion behaviours potentially leading to emergenceof an
impact boundary, in the absenceof sensoryreadingsfrom
cells destroyed by impacts:

(i) At the start of every cycle, every cell sendsa Ping
messageto each of its neighbours.

(ii) If a booleanvariable EnableAcksis true, a cell sends
an Acknowledgment reply when it receives a Ping
message.

The secondbehaviour is evolvable, while the �rst one
is pre-determined. Two binary circular arrays are used
to store the communication histories for ping messages
(pingArray) and acknowledgments (ackArray) for each
communication port. The size of these arrays is called
the communication history length.

Every cycle, after receiving communication messages,
each cell updates the following parameters:

(1) For each communication port, PingFailure will re-
sult if the percentage of lost Pings in the pingArray
is greater than PingFailThr eshold.

(2) For each communication port, PingSuccesswill re-
sult if the percentage of Pings received in the pingAr-
ray is greater than or equal to PingSuccessThreshold.

(3) For each communication port, AckSuccesswill re-
sult if the percentage of Acknowledgments received
in the AckArray is greater than or equal to AckSuc-
cessThreshold.

The Failure and Success parameters are hysteretic:
they change values only when a su�cien t communica-
tion history is accumulated. This lagging of an e�ect

behind its cause provides a (temporary) resistance to
changeand ensuresa degreeof stabilit y in the treatment
of communication connectionsbetweenany two cells:

(4) A neighbour is considered to be communicating
when EnableAcks is falseand PingSuccessis true, or
both EnableAcks is true and AckSuccessis true.

(5) Sca�olding state Ss will result if there are no com-
municating neighbours.

(6) Frame boundary state Sf will result if PingSuc-
cessis true for at least onecommunication port, and
PingFailure is true for at least one communication
port2.

(7) Closed boundary state Sc will result if the cell
state is Sf , and there are at least two communicating
neighbours.

In order for a continuous impact boundary to emerge,
the following two communication behaviours were con-
sidered:

(iii) if the cell state is Sc, 1) determine a cell � that
failed to communicate; 2) determine two communi-
cating neighbour cells � 1 and � 2 nearest to the cell
� 3; 3) map the directions to � , � 1 and � 2 to a di-
rection  ; and 4) senda \Connect( � ;  )" messageto
both � 1 and � 2 with a time to live parameter � ;

(iv) upon receiving \Connect( � ;  )" messagefrom a
cell � , if the cell state is not Sc, 1) switch to the
state Sc, 2) if � > 0, follow the steps 2) and 3)
from (iii) producing new direction  0 and 3) send a
\Connect( � � 1;  0)" messageto neighbours � 1 and
� 2.

The time to live � is an evolvable parameter, and pre-
vents spurious links from persisting. In general, the de-
scribed policy achievesthe desiredrobustnessand conti-
nuit y of self-organisingimpact boundariesfor a variety of
cell shapes (triangular and square) and communication
damageprobabilit y distributions (Foreman et al., 2003).
One particular evolvable behaviour is critical in achiev-
ing the desiredstabilit y:

(v) If a boolean variable EnableShutdownis true, the
cell in the Sca�olding state Ss will stop transmitting
messages.

This is needed in order to break asymmetry between
neighboring cells, where a cell is able to transmit data
but not receive, or vice versa| it is better in such cases

2This condition is similar to the condition of having at least
one communicating neighbour and at least one mis-communicating
neighbour, but doesnot assumeAcknowledgement messagesat all.

3When cell � determines its own neighbour cells nearest to some
other neighbour cell � , it choosesthe cells � 1 and � 2 on opposite
sides (clockwise and counter-clo ckwise), relativ e to � .



not to communicate at all. This behaviour is e�ectiv e in
achieving stable impact boundaries. However, the cells
that stopped transmitting messagesmay needto resume
communications under certain conditions | for example,
when a repair action is initiated, and their neighbours
are again ready to receive communications (i.e., when
the causeof asymmetry is eliminated). The conditions
for resumption of communications have to be preciseso
that they are not reacted upon prematurely, interfering
with boundary formation. A variant of these recovery
conditions is given below:

(vi) Recovery state Sr will result if all ports have ping-
Successfor a number of consecutivecycles,wherethis
number is set by RecoveryThreshold.

(vii) Recovery state Sr will result if all ports have ping-
Failure for a number of consecutive cycles,wherethis
number is set by RecoveryThreshold.

(viii) A cell stays in the Recovery state Sr and may
send communication messagesduring the next Re-
coveryInertia cycles.

The behaviour (vii) enablestotally isolated cells to be in
a ready recovery state as well | a feature that, under-
standably, may be neededwhen a repair is in progress
and cells are being transported acrossa panel. It is pre-
ciselythe combination of the \shutdown" and \recovery"
conditions that makes the problem of designing (evolv-
ing) stable impact boundariesparticularly di�cult. On
onehand, \shutdown" condition (v) disables\asymmet-
ric" messages,making the task of boundary formation
easier. On the other hand, conditions (vi)-(viii) may
enable\asymmetric" messages,potentially destabilising
the boundary.

The solution to this problem is provided by emer-
gent spatiotemporal structures | recovery membranes
| that separate the boundaries from recovering cells.
A recovery membrane always forms on the inside of
the closed boundary, and on the outside of the recov-
ering area. Interestingly, unlike sca�olding and frame
boundary, the membrane is not a designatedstate into
which a cell can switch. Membrane cells shut down
their communications, following behaviour (v) like other
sca�olding cells, but do not resumecommunications be-
causebehaviours (vi)|(viii) are not applicable, as there
are some (but not all) mis-communicating neighbours.
Without a membrane, the cells on the frame boundary
would be confusedby intermitten t messagesfrom scaf-
folding cells attempting recovery. Figure 4 illustrates a
checkered-pattern recovery membrane shown with dark-
grey colour, while the recovering cells are shown in
darker shadeof white. It is quite obvious that the mem-
brane cells separatethe recovering sca�olding cells from
the frame boundary.

Figure 4: Five white cells at the epicentre are destroyed. A
recovery membrane shown in dark-grey \absorbs" sca�olding
cells that attempt recovery, shown in darker shade of white,
and separatesthem from the frame, shown in black.

4. Evolving Recovery Mem branes

In this section, we describe a Genetic Algorithm (GA)
aimed at evolving the parametersusedin impact bound-
ary formation. In particular, we examine the inter-
relationships between communication \shutdown" and
\recovery" conditions that give rise to recovery mem-
branesneededfor stable impact boundaries. Someof the
evolving parameters designateconditionalised branches
of the impact boundary algorithm, and somerepresent
various thresholds, so the search space is signi�cantly
large. It is well-known that a genetic algorithm, as a
problem-solvingtool basedon biological evolution, works
on improving a solution via a search through a processof
selection, recombination (crossover) and mutation, and
is particularly usefulwhen the search spacehasmany lo-
cal optima or is too large to useconventional techniques.

4.1 Encoding

We followed a traditional GA encoding: binary strings
encoding the chromosomeas a structure containing the
collection of parameters (genes)and representing a be-
havioural trait of the individual. Our chromosomecon-
tains the following 42 bits:

History, � (5 bits) | number of cycles for which a
cell remembers the received Pings and Acknowledge-
ments.

PingFailThr eshold(7 bits) | a percentage representing
the number of Ping messageslost in the last History
cyclesincluding the current cycle.

PingSuccessThreshold (7 bits) | a percentage repre-
senting the number of Ping messagesreceived in the
last History cyclesincluding the current cycle.



AckSuccessThreshold(7 bits) | a percentagerepresent-
ing the number of Acknowledgements messagesre-
ceived in the last History cyclesincluding the current
cycle.

RecoveryThreshold, � (5 bits) | number of cycles the
recovery condition must hold for communication re-
covery to start.

RecoveryInertia (6 bits) | number of cycles in which
a cell continues to communicate with its neighbours
while recovering.

Time to live, � (3 bits) | number of times a Connect
messageis sent beforebeing discarded.

EnableShutdown(1 bit) | a Boolean variable indicat-
ing whether a cell shutdown functionalit y is enabled.

EnableAcks (1 bit) | a Boolean variable indicating
whether a cell has the abilit y to send and receive
Acknowledgements messages.

4.2 Fitness/Objective Function

The evolution of recovery membranes is based on
spatiotemporal metrics incorporated within a �tness
(objective) function. The analysis presented by
(Foreman et al., 2003) used two metrics to characterise
stabilit y of emergent impact boundaries: spatial and
temporal.

The spatial metric is basedon the variance in the size
of the connectedboundary-fragment (CBF). A CBF is
simply a set F of cells in the closedstate Sc such that
every cell in F is connectedwith at least oneother cell in
F, and there exists no cell outside F, which is connected
to at least onecell in F (an analogueof a maximally con-
nected sub graph or a graph component). We calculate
the maximum sizeH sp (t) of CBF's in self-organisingim-
pact boundariesat each cycle. Its variance� 2

sp over time
is then usedasa spatial metric within the objective func-
tion. This metric, as mentioned before, is inspired by
random graphs theory and is intended to capture spatial
connectivity in impact boundaries. A continuousbound-
ary may, however, change its shape over time, without
breaking into fragments, while keeping the size of CBF
almost constant. Therefore,a temporal metric that mea-
suresthe diversity of cell transitions (analogouslyto cel-
lular automata input-entropy or the 
 measureused to
characteriseo cking behaviour) may be complementary.

In order to analyse temporal persistence, we consider
state changesin each cell at every time step. Given 6
symmetric boundary links possible in each square cell
(\left-righ t", \top-b ottom", \left-top", etc.), there are
26 possibleboundary states (including \no-b oundary"),
and m = 212 transitions. The entropy H temp (t) of a
particular frequencydistribution Si (t), where t is a time

Figure 5: A chaotic boundary with H sp � 16 and zero-length
communication � . A membrane does not form at all. Both
� 2

sp and � 2
temp are low-to-medium.

step, and i is a cell transition index: 1 � i � m, can be
calculated as follows:

H temp (t) = �
mX

i =1

Si (t)
n

log
Si (t)

n
;

wheren is the total number of cells,and Si (t) is the num-
ber of times the transition i wasusedat time t acrossall
cells. Again, the variance � 2

temp of the entropy H temp (t)
over time is usedas a temporal metric within the objec-
tiv e function.

Our task is complicated by the fact that emergent
structures are characterised by a phase transition de-
tectable by either � 2

sp or � 2
temp , rather than a particular

value range. Therefore, simply rewarding low values for
these entropy-based metrics would be insu�cien t. In
particular, it has been observed (Foreman et al., 2003)
that both metrics are low-to-medium for algorithms with
zero-length communication � (tropistic algorithms and
chaotic regimes | Figure 5), increasedramatically for
� in the range 1 � � � � 0, where � 0 is a critical value
at and below which complex unstable behaviours occur
(Figure 6), and undergo a phasetransition to very low
values when � > � 0 (hysteretic algorithms and ordered
regimes).

The critical value � 0 is, of course, dependent on all
other parameters used by the algorithm. Nevertheless,
the chaotic regimes, which are more stable simply due
to a small number of connections,can often be identi�ed
by a low average H sp of the maximum sizesH sp (t) of
CBF's in impact boundaries, ruling out at least zero-
length histories. In particular, impact boundaries with
the average H sp � 16 can be safely ruled out | the



Figure 6: An unstable boundary with � close to its critical
value. The membrane is fragmentary. Both � 2

sp and � 2
temp

are close to their peaks: the phase transition.

resulting chaotic patterns, illustrated in Figure 5, are of
no interest.

On the other hand, a preference among ordered
regimestowards shorter histories is another useful iden-
ti�er of a phase transition and the critical value � 0.
Besides, a shorter communication history � enables a
quicker response,as do lower values of � and � . Thus,
our �rst experiment used minimisation of the following
objective function:

f sp (� ) =
�

M if H sp � 16;
4:0 � 2

sp + � + � + � + � H sp if H sp > 16;

where M is the maximal integer value provided by the
compiler. The coe�cien t � reects the relative impor-
tance of the length of impact boundariesin the objective
function | sometimes,it may be as important to obtain
smallest possibleimpact perimeter as it is to maintain a
shortest possiblecommunication history. We alternated
between� 1 = 0:25 and � 2 = 2:0.

The secondexperiment focussedon temporal metric
� 2

temp embeddedin the objective function f temp (� ) con-
structed analogouslyto the function f sp (� ):

f temp (� ) =

8
<

:

M if H sp � 16;
105 � 2

temp + � + � + � +
+ � H sp if H sp > 16:

Finally, our ultimate objective function is de�ned as fol-
lows:

f (� ) =

8
<

:

M if H sp � 16;
1
2 (4:0 � 2

sp + 105 � 2
temp ) +

+ � + � + � + � H sp if H sp > 16

Each experiment involves an impact at a prede�ned
cell, and lasts 500cycles;the �rst 30 cyclesare excluded
from the seriesH sp (t) and H temp (t) in order not to pe-
nalise longer history lengths � . We repeat the exper-
iment 3 times for every chromosome and average the
objective (�tness) valuesobtained over theseruns.

4.3 Selection

We have chosena generation gap replacement strategy
hoping to use better search capabilities o�ered by the
generational replacement and faster convergencetypi-
cally provided by the steadystate selection. Someof this
faster convergence,however, may be explained by the
stochastic nature of the selectionoperator: the rate of ge-
netic drift in steadystate selectionis twice that of gener-
ational selection(Rogersand Pr•ugel-Bennett, 1999). In
our experiments, we set the generation gap parameter
G = 0:2. In other words, the entire old population
(40 chromosomes)is sorted according to �tness, and we
choosethe best20%for direct replication in the next gen-
eration, employing an elitist selection mechanism. The
selectionphaseand recombination (crossover) phasecan
be merged (Thierens and Goldberg, 1994). We follow a
similar approach but still explicitly keep the selection
phasereplicating the elitist o�spring. The rest of selec-
tion functionalit y is moved into the crossover.

4.4 Crossoverand Mutation

We used a variation of the n-point crossover, where
the probabilit y of having n points in the crossover de-
pendson the �tness of the chromosome.We choosethis
sincethere are bene�ts of having a low and high n-point
crossover, enabling a better exploration in the search
space. Our variation involves three di�eren t crossovers,
each having an equal probabilit y of contributing to the
generation of new chromosomes. In other words, after
the elite takes 20% of the new population, for each re-
maining place we randomly perform a crossover chosen
among the following three:

Elitist driven: parent 1 is randomly chosen from the
bestperforming 20%of the old population and parent
2 is randomly chosenfrom the entire old population,
followed by a low 1- to 2-point crossover (the number
of points is determined randomly). This low-point
crossover is usedhere sinceit makessenseto disturb
an elitist-driv en solution as little as possible.

Mid-r ange: parent 1 is randomly chosenfrom the next
20%- 50%of the old population and parent 2 is ran-
domly chosenfrom the entire old population, followed
by a medium 1- to 4-point point crossover (the num-
ber of points is determined randomly as well). This
medium-point crossover is more applicable when it
makessenseto disturb a mediocre solution.



Figure 7: A large checkered-pattern membrane, with short
hysteresis, within a morphing but closed and contin uous
boundary (� = 0:25). Both � 2

sp and � 2
temp are low.

Remainder: parent 1 is randomly chosenfrom the worst
performing 50% of the population and parent 2 is
randomly chosenfrom the entire old population, fol-
lowed by a high 1- to 7-point crossover, potentially
disrupting an under-�t solution a lot in order to enter
a new search region.

A feature of this multi-p oint crossover is that the �rst
geneis always inherited from parent 1. We also ensure
that o�spring generatedfrom the crossover is unique. We
use a slightly higher than typical mutation rate: each
bit in the chromosomehas a 0:04 probabilit y of being
ipp ed. We also ensure that the mutation results in
a unique chromosomeby repeating mutation if the pro-
ducedchromosomealready exists in the new population.
Mutation is not performedon the chromosomegenerated
via elitist selection.

5. Exp erimen tal Results

Our �rst experiment minimising the objective function
f sp (0:25) wasmainly concernedwith spatially connected
and stable impact boundaries, and the form taken by
corresponding recovery membranes. The length of the
boundary was of lesser importance. Not surprisingly,
the evolved solution achieved long robust and continu-
ousimpact boundarieswith H sp = 40 (Figure 7), around
large impact-surrounding regions, while requiring fairly
short hysteresis: � = 2 and � = 5. The stabilisation
of an impact boundary around a large region occurs at
the periphery of the communication damage,where the
probabilit y Pf ail ur e falls to 0 due to the error correction
code, and the processhas a cascadingnature, where the
boundary expands to eventually cover all the impact-

Figure 8: A small membrane, with long hysteresis, within a
regular octagonal boundary (� = 2:0). Both � 2

sp and � 2
temp

are very low.

surrounding region. Interestingly, the evolved continu-
ous boundariesmay change their shape and only rarely
stabilise asa regular octagon, while keepingtheir length
H sp = 40 constant. The emergent recovery membrane
evolved to separateboundary from the recovering cells.
It has a checkered pattern that can be explained by the
opposingnature of the conditions (vi) and (vii), and the
short hysteresis enabling oscillations between recovery
and sca�olding states.

On the other hand, minimisation of f sp (2:0) resulted
in more compact impact-surrounding regions(H sp = 32,
Figure 8) and thinner membranes, at the expense of
longer hysteresis: � = 6 and � = 4. These boundaries
morph as well, but generally keepthe shape of a regular
octagon. Interestingly, the secondexperiment produced
a typical speciation, where the longer hysteresis solu-
tions took only one niche, while shorter hysteresis� = 2
and � = 4 solutions co-evolved into a separate niche,
both niches evolving compact regions with boundaries
H sp = 32. This supports our conjecture that the em-
ployed generational gap selectionwith G = 0:2 counter-
acts the genetic drift to a reasonabledegree.

Both solutions favoured � = 1 as expected for square
cells (while triangular cells require at least � = 2 to
achievecontinuit y). Also, the evolvedcellsprefer to send
Acknowledgements (EnableAcks = 1) and stop trans-
mitting in sca�olding state (EnableShutdown = 1).
Without the latter feature membraneswould not emerge,
and the recovering cells would disrupt the boundaries.

The secondpair of experiments focussedon evolving
temporally stable boundaries, minimising f temp (0:25)
and f temp (2:0). Theseexperiments producedresultsvery
similar to the ones obtained by minimising the spatial
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Figure 9: The functions f sp (0:25), f temp (0:25) and f (0:25).

metric. In particular, two types of boundaries evolved,
one with a shorter hysteresis (� = 2 and � = 8) and
longer boundariesH sp = 40, and the other with a longer
hysteresis (� = 6 and � = 4) and shorter boundaries
H sp = 32. Both solutions involve membranes, the main
di�erence beingthat eventhe shorter hysteresissolutions
with longer boundariestend to reach and retain the reg-
ular octagon shape. However, sometimesthe boundary
fragments. Theseoutcomesareexpectedfor an objective
function rewarding temporal stabilit y.

The �nal pair of experiments combined the spatial and
temporal metric, minimising f (0:25) and f (2:0). Again,
both types: (H sp = 40, � = 2, � = 8) and (H sp = 32,
� = 6, � = 8) were produced. As expected, the evolved
membranes and boundaries were more stable, and had
a regular octagon shape in both cases,mostly without
morphing or fragmenting.

As mentioned above, the case � = 0:25 results in
longer boundaries that are capable of morphing with-
out breaking into fragments. The objective functions
f sp (0:25), f temp (0:25) and f (0:25) for the most �t indi-
vidual in each generation are plotted in Figure 9. All
plots exclude the initial period (20 generations) of the
rapid decreasetypical for GA-based exploration of the
search-space. The function f sp (0:25) convergeswell but
doesnot explorethe search-spaceconsiderably. This is so
becauseit usesthe spatial metric and, therefore, rewards
the boundary's continuit y, ignoring morphing instabilit y
| which is \allo wed" in this case.On the contrary , the
function f temp (0:25) attempts to minimise morphing in-
stabilit y and has to explore a large part of the space.

The objective functions f sp (2:0), f temp (2:0) and f (2:0)
are plotted in Figure 10. The case� = 2:0 results in
shorter boundariesthat cannot morph without breaking
into fragments, soany instabilit y leadsto fragmentation.
Consequently , the function f temp (2:0) shows the con-
vergencewithin a narrower band | it usesthe tempo-
ral metric and rewards persistence,ignoring occasional
fragmentations. Its counterpart, the function f sp (2:0),
speci�cally puts selectionpressureon continuit y, leading
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Figure 10: The functions f sp (2:0), f temp (2:0) and f (2:0).

to a wider exploration and poorer convergence.
Importantly , the functions f (0:25) and f (2:0), using

spatiotemporal metrics, provided a good compromisein
both cases.The experiments con�rmed that the choiceof
an objective function depends on the main task: when
the target is not only continuit y of impact boundaries
but also their shape, then the spatiotemporal metric is
more suitable. On the other hand, if morphing is accept-
able, then a spatial metric capturing connectivity rather
than shape is su�cien t. Similarly, a temporal metric
may be better suited for a general shape design if spo-
radic fragmentations are tolerable.

6. Conclusion

In this paper we suggestedand veri�ed a methodol-
ogy underlying design of localised algorithms for com-
plex multi-agent systems,exempli�ed by self-monitoring
aerospace vehicles. We started by briey describ-
ing a multi-agent algorithm leading to emergenceof
impact boundaries and recovery membranes, followed
by quantitativ e measurement of spatiotemporal stabil-
it y of the emergent patterns. The graph-theoretic
and information-theoretic metrics, capable of identify-
ing phasetransitions, contributed to �tness functions for
evolutionary modelling of boundaries and membranes.
The produced results are promising and demonstrate
the possibility for a multi-ob jective design of localised
algorithms. In particular, the desired responsetime as
well assize(and potentially , shape) of impact boundaries
and membranesmay be speci�ed in advance,leaving the
preciselogic and parameterisation of the localisedalgo-
rithms to selection pressures. We believe that the pro-
posed methodology is well suited to the design at the
edgeof chaos, where the designobjective (e.g., a speci�c
shape) may beunstable,while other parameters(e.g. the
responsetime) may be optimal. The presented methods
should increasethe reliabilit y of the design of complex
multi-agent systems, accounting for emergent patterns
that are not easily predictable by human designers.
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